Ортогональное проецирование
Oртогональное проецирование — это частный случай параллельного проецирования. При ортогональном проецировании проецирующие лучи перпендикулярны к плоскости проекций.
Аппарат такого проецирования состоит из одной плоскости проекций.
Чтобы получить ортогональную проекцию точки А, через неё надо провести проецирующий луч перпендикулярно к П1. Точка А1 называется ортогональной или прямоугольной проекцией точки А.
Чтобы получить ортогональную проекцию А1В1 отрезка АВ, на плоскость П1, необходимо через точки А и В провести проецирующие прямые, перпендикулярные П1. При пересечении проецирующих прямых с плоскостью П1 получатся ортогональные проекции А1 и В1 точек А и В. Соединив ортогональные проекции А1 и В1 получим ортогональную проекцию А1В1 отрезка АВ.
Все свойства параллельного проецирования выполнимы и для ортогонального проецирования. Однако ортогональные проекции обладают ещё некоторыми свойствами.
Свойства ортогонального проецирования:
1. Длина отрезка равна длине его проекции, делённой на косинус угла наклона отрезка к плоскости проекций.
Возьмём прямую АВ и построим её ортогональную проекцию А1В1 на плоскость П1. Если провести прямую АС || А1В1, то из треугольника АВС следует, что |АС| : |АВ| = cos или |АВ| = |А1В1| : cos , т. к. |А1В1| = |АС|.
2. Кроме того, для ортогонального проецирования будет справедлива теорема о проецировании прямого угла:
Теорема: Если хотя бы одна сторона прямого угла параллельна плоскости проекций, а вторая ей не перпендикулярна, то угол на эту плоскость проецируется в натуральную величину.
Доказательство:
Дан прямой угол АВС, у которого по условию прямая ВС
АВ и ВС || плоскости проекций П1. По построению прямая ВС
к проецирующему лучу ВВ1. Следовательно, прямая ВС
к плоскости (АВхВВ1), т. к. она
к двум пересекающимся прямым , лежащим в этой плоскости. По условию прямая В1С1 || ВС, поэтому тоже
к плоскости , т. е. и прямой А1В1 этой плоскости. Следовательно, угол между прямыми А1В1 и В1С1 равен 90°, что и требовалось доказать.
Ортогональное проецирование обеспечивает простоту геометрических построений при определении ортогональных проекций точек, а так же возможность сохранять на проекциях форму и размеры проецируемой фигуры. Эти достоинства обеспечили ортогональному проецированию широкое применение в техническом черчении.