1. Задание 18 № 27415
Квадрат разлинован на N×N клеток (1 N
Задание 18
Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную.
Исходные данные представляют собой электронную таблицу размером N×N, каждая ячейка которой соответствует клетке квадрата.
Пример входных данных:
1 | 8 | 8 | 4 |
10 | 1 | 1 | 3 |
1 | 3 | 12 | 2 |
2 | 3 | 5 | 6 |
Для указанных входных данных ответом должна быть пара чисел 41 и 22.
2. Задание 18 № 27666
Квадрат разлинован на N×N клеток (1 N
Задание 18
Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой нижней клетки в правую верхнюю. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную.
Исходные данные представляют собой электронную таблицу размером N×N, каждая ячейка которой соответствует клетке квадрата.
Пример входных данных:
1 | 8 | 8 | 4 |
10 | 1 | 1 | 3 |
1 | 3 | 12 | 2 |
2 | 3 | 5 | 6 |
Для указанных входных данных ответом должна быть пара чисел 35 и 15.
3. Задание 18 № 27667
Квадрат разлинован на N×N клеток (1 N
Задание 18
Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную.
Исходные данные представляют собой электронную таблицу размером N×N, каждая ячейка которой соответствует клетке квадрата.
Пример входных данных:
1 | 8 | 8 | 4 |
10 | 1 | 1 | 3 |
1 | 3 | 12 | 2 |
2 | 3 | 5 | 6 |
Для указанных входных данных ответом должна быть пара чисел 41 и 22.
4. Задание 18 № 27668
Квадрат разлинован на N×N клеток (1 N
Задание 18
Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой нижней клетки в правую верхнюю. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную.
Исходные данные представляют собой электронную таблицу размером N×N, каждая ячейка которой соответствует клетке квадрата.
Пример входных данных:
1 | 8 | 8 | 4 |
10 | 1 | 1 | 3 |
1 | 3 | 12 | 2 |
2 | 3 | 5 | 6 |
Для указанных входных данных ответом должна быть пара чисел 35 и 15.
5. Задание 18 № 27669
Квадрат разлинован на N×N клеток (1 N
Задание 18
Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную.
Исходные данные представляют собой электронную таблицу размером N×N, каждая ячейка которой соответствует клетке квадрата.
Пример входных данных:
1 | 8 | 8 | 4 |
10 | 1 | 1 | 3 |
1 | 3 | 12 | 2 |
2 | 3 | 5 | 6 |
Для указанных входных данных ответом должна быть пара чисел 41 и 22.
6. Задание 18 № 27670
Квадрат разлинован на N×N клеток (1 N
Задание 18
Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой нижней клетки в правую верхнюю. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную.
Исходные данные представляют собой электронную таблицу размером N×N, каждая ячейка которой соответствует клетке квадрата.
Пример входных данных:
1 | 8 | 8 | 4 |
10 | 1 | 1 | 3 |
1 | 3 | 12 | 2 |
2 | 3 | 5 | 6 |
Для указанных входных данных ответом должна быть пара чисел 35 и 15.
7. Задание 18 № 27671
Квадрат разлинован на N×N клеток (1 N
Задание 18
Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную.
Исходные данные представляют собой электронную таблицу размером N×N, каждая ячейка которой соответствует клетке квадрата.
Пример входных данных:
1 | 8 | 8 | 4 |
10 | 1 | 1 | 3 |
1 | 3 | 12 | 2 |
2 | 3 | 5 | 6 |
Для указанных входных данных ответом должна быть пара чисел 41 и 22.
8. Задание 18 № 27672
Квадрат разлинован на N×N клеток (1 N
Задание 18
Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой нижней клетки в правую верхнюю. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную.
Исходные данные представляют собой электронную таблицу размером N×N, каждая ячейка которой соответствует клетке квадрата.
Пример входных данных:
1 | 8 | 8 | 4 |
10 | 1 | 1 | 3 |
1 | 3 | 12 | 2 |
2 | 3 | 5 | 6 |
Для указанных входных данных ответом должна быть пара чисел 35 и 15.
9. Задание 18 № 27673
Квадрат разлинован на N×N клеток (1 N
Задание 18
Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную.
Исходные данные представляют собой электронную таблицу размером N×N, каждая ячейка которой соответствует клетке квадрата.
Пример входных данных:
1 | 8 | 8 | 4 |
10 | 1 | 1 | 3 |
1 | 3 | 12 | 2 |
2 | 3 | 5 | 6 |
Для указанных входных данных ответом должна быть пара чисел 41 и 22.
10. Задание 18 № 27674
Квадрат разлинован на N×N клеток (1 N
Задание 18
Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой нижней клетки в правую верхнюю. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную.
Исходные данные представляют собой электронную таблицу размером N×N, каждая ячейка которой соответствует клетке квадрата.
Пример входных данных:
1 | 8 | 8 | 4 |
10 | 1 | 1 | 3 |
1 | 3 | 12 | 2 |
2 | 3 | 5 | 6 |
Для указанных входных данных ответом должна быть пара чисел 35 и 15.
11. Задание 18 № 27675
Квадрат разлинован на N×N клеток (1 N
Задание 18
Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную.
Исходные данные представляют собой электронную таблицу размером N×N, каждая ячейка которой соответствует клетке квадрата.
Пример входных данных:
1 | 8 | 8 | 4 |
10 | 1 | 1 | 3 |
1 | 3 | 12 | 2 |
2 | 3 | 5 | 6 |
Для указанных входных данных ответом должна быть пара чисел 41 и 22.
12. Задание 18 № 27676
Квадрат разлинован на N×N клеток (1 N
Задание 18
Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой нижней клетки в правую верхнюю. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную.
Исходные данные представляют собой электронную таблицу размером N×N, каждая ячейка которой соответствует клетке квадрата.
Пример входных данных:
1 | 8 | 8 | 4 |
10 | 1 | 1 | 3 |
1 | 3 | 12 | 2 |
2 | 3 | 5 | 6 |
Для указанных входных данных ответом должна быть пара чисел 35 и 15.
13. Задание 18 № 27677
Квадрат разлинован на N×N клеток (1 N
Задание 18
Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную.
Исходные данные представляют собой электронную таблицу размером N×N, каждая ячейка которой соответствует клетке квадрата.
Пример входных данных:
1 | 8 | 8 | 4 |
10 | 1 | 1 | 3 |
1 | 3 | 12 | 2 |
2 | 3 | 5 | 6 |
Для указанных входных данных ответом должна быть пара чисел 41 и 22.
14. Задание 18 № 27678
Квадрат разлинован на N×N клеток (1 N
Задание 18
Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой нижней клетки в правую верхнюю. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную.
Исходные данные представляют собой электронную таблицу размером N×N, каждая ячейка которой соответствует клетке квадрата.
Пример входных данных:
1 | 8 | 8 | 4 |
10 | 1 | 1 | 3 |
1 | 3 | 12 | 2 |
2 | 3 | 5 | 6 |
Для указанных входных данных ответом должна быть пара чисел 35 и 15.
15. Задание 18 № 27679
Квадрат разлинован на N×N клеток (1 N
Задание 18
Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную.
Исходные данные представляют собой электронную таблицу размером N×N, каждая ячейка которой соответствует клетке квадрата.
Пример входных данных:
1 | 8 | 8 | 4 |
10 | 1 | 1 | 3 |
1 | 3 | 12 | 2 |
2 | 3 | 5 | 6 |
Для указанных входных данных ответом должна быть пара чисел 41 и 22.
16. Задание 18 № 27680
Квадрат разлинован на N×N клеток (1 N
Задание 18
Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой нижней клетки в правую верхнюю. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную.
Исходные данные представляют собой электронную таблицу размером N×N, каждая ячейка которой соответствует клетке квадрата.
Пример входных данных:
1 | 8 | 8 | 4 |
10 | 1 | 1 | 3 |
1 | 3 | 12 | 2 |
2 | 3 | 5 | 6 |
Для указанных входных данных ответом должна быть пара чисел 35 и 15.
17. Задание 18 № 27681
Квадрат разлинован на N×N клеток (1 N
Задание 18
Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную.
Исходные данные представляют собой электронную таблицу размером N×N, каждая ячейка которой соответствует клетке квадрата.
Пример входных данных:
1 | 8 | 8 | 4 |
10 | 1 | 1 | 3 |
1 | 3 | 12 | 2 |
2 | 3 | 5 | 6 |
Для указанных входных данных ответом должна быть пара чисел 41 и 22.
18. Задание 18 № 27682
Квадрат разлинован на N×N клеток (1 N
Задание 18
Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой нижней клетки в правую верхнюю. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную.
Исходные данные представляют собой электронную таблицу размером N×N, каждая ячейка которой соответствует клетке квадрата.
Пример входных данных:
1 | 8 | 8 | 4 |
10 | 1 | 1 | 3 |
1 | 3 | 12 | 2 |
2 | 3 | 5 | 6 |
Для указанных входных данных ответом должна быть пара чисел 35 и 15.
19. Задание 18 № 27683
Квадрат разлинован на N×N клеток (1 N
Задание 18
Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную.
Исходные данные представляют собой электронную таблицу размером N×N, каждая ячейка которой соответствует клетке квадрата.
Пример входных данных:
1 | 8 | 8 | 4 |
10 | 1 | 1 | 3 |
1 | 3 | 12 | 2 |
2 | 3 | 5 | 6 |
Для указанных входных данных ответом должна быть пара чисел 41 и 22.
20. Задание 18 № 27684
Квадрат разлинован на N×N клеток (1 N
Задание 18
Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой нижней клетки в правую верхнюю. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную.
Исходные данные представляют собой электронную таблицу размером N×N, каждая ячейка которой соответствует клетке квадрата.
Пример входных данных:
1 | 8 | 8 | 4 |
10 | 1 | 1 | 3 |
1 | 3 | 12 | 2 |
2 | 3 | 5 | 6 |
Для указанных входных данных ответом должна быть пара чисел 35 и 15.
21. Задание 18 № 27685
Квадрат разлинован на N×N клеток (1 N
Задание 18
Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную.
Исходные данные представляют собой электронную таблицу размером N×N, каждая ячейка которой соответствует клетке квадрата.
Пример входных данных:
1 | 8 | 8 | 4 |
10 | 1 | 1 | 3 |
1 | 3 | 12 | 2 |
2 | 3 | 5 | 6 |
Для указанных входных данных ответом должна быть пара чисел 41 и 22.
22. Задание 18 № 29666
Дана последовательность вещественных чисел. Из неё необходимо выбрать несколько подряд идущих чисел так, чтобы каждое следующее число было меньше предыдущего. Какую максимальную сумму могут иметь выбранные числа?
В ответе запишите только целую часть максимально возможной суммы. Исходная последовательность записана в виде одного столбца электронной таблицы.
Задание 18
Пример входных данных:
Для указанных входных максимально возможная сумма равна 10,4, в ответе надо записать число 10.
23. Задание 18 № 33097
Дана последовательность вещественных чисел. Из неё необходимо выбрать несколько подряд идущих чисел так, чтобы каждое следующее число было больше предыдущего. Какую максимальную сумму могут иметь выбранные числа?
В ответе запишите только целую часть максимально возможной суммы. Исходная последовательность записана в виде одного столбца электронной таблицы.
Задание 18
Пример входных данных:
Для указанных входных данных максимально возможная сумма равна 9,3, в ответе надо записать число 9.
24. Задание 18 № 33190
Дана последовательность вещественных чисел. Из неё необходимо выбрать несколько подряд идущих чисел так, чтобы каждое следующее число отличалось от предыдущего не более чем на 10. Какую максимальную сумму могут иметь выбранные числа?
В ответе запишите только целую часть максимально возможной суммы. Исходная последовательность записана в виде одного столбца электронной таблицы.
Задание 18
Пример входных данных:
5,2 |
13,1 |
2,2 |
12,3 |
3,1 |
2,3 |
Для указанных входных данных ответом будет число 18.
25. Задание 18 № 33488
Дана последовательность вещественных чисел. Из неё необходимо выбрать несколько подряд идущих чисел так, чтобы каждое следующее число отличалось от предыдущего не более чем на 8. Какую максимальную сумму могут иметь выбранные числа?
В ответе запишите только целую часть максимально возможной суммы. Исходная последовательность записана в виде одного столбца электронной таблицы.
18.xlsx
Пример входных данных:
5,2 |
13,1 |
2,2 |
11,3 |
3,1 |
2,3 |
Для указанных входных данных ответом будет число 18.
26. Задание 18 № 33520
Дан квадрат 15 × 15 клеток, в каждой клетке которого записано целое число. В левом верхнем углу квадрата стоит ладья. За один ход ладья может переместиться в пределах квадрата на любое количество клеток вправо или вниз (влево и вверх ладья ходить не может). Необходимо переместить ладью в правый нижний угол так, чтобы сумма чисел в клетках, в которых ладья останавливалась (включая начальную и конечную), была максимальной. В ответе запишите максимально возможную сумму.
Исходные данные записаны в электронной таблице.
Задание 18
Пример входных данных (для таблицы размером 4 × 4):
−3 | 1 | −3 | −4 |
−4 | −4 | −2 | 2 |
6 | 1 | 2 | −2 |
−6 | 7 | 6 | −3 |
Для указанных входных данных ответом будет число 14 (ладья проходит через клетки с числами −3, 6, 1, 7, 6, −3).
27. Задание 18 № 33763
Дан квадрат 15 × 15 клеток, в каждой клетке которого записано целое число. В левом верхнем углу квадрата стоит ладья. За один ход ладья может переместиться в пределах квадрата на любое количество клеток вправо или вниз (влево и вверх ладья ходить не может). Необходимо переместить ладью в правый нижний угол так, чтобы сумма чисел в клетках, в которых ладья останавливалась (включая начальную и конечную), была минимальной. В ответе запишите минимально возможную сумму.
Исходные данные записаны в электронной таблице.
Задание 18
Пример входных данных (для таблицы размером 4 × 4):
−6 | 3 | −3 | 1 |
1 | −3 | 3 | −5 |
−4 | 4 | −2 | 2 |
5 | 0 | 0 | 3 |
Для указанных входных данных ответом будет число −10 (ладья проходит через клетки с числами −6, 1, −3, −5, 3).
28. Задание 18 № 35476
Дан квадрат 15 × 15 клеток, в каждой клетке которого записано целое число. В левом верхнем углу квадрата стоит робот. За один ход робот может переместиться на одну клетку вправо, вниз или по диагонали вправо вниз. Выходить за пределы квадрата робот не может. Необходимо переместить робота в правый нижний угол так, чтобы сумма чисел в клетках, через которые прошёл робот (включая начальную и конечную), была максимальной. В ответе запишите максимально возможную сумму.
Исходные данные записаны в электронной таблице.
Задание 18
Пример входных данных (для таблицы размером 4 × 4):
4 | 21 | −36 | 11 |
37 | −12 | 29 | 7 |
−30 | 24 | −1 | −5 |
8 | −8 | 9 | 21 |
Для указанных входных данных ответом будет число 95 (робот проходит через клетки с числами 4, 37, 24, 9, 21).
29. Задание 18 № 35907
Дан квадрат 15 × 15 клеток, в каждой клетке которого записано целое число. В правом верхнем углу квадрата стоит робот. За один ход робот может переместиться на одну клетку влево, вниз или по диагонали влево вниз. Выходить за пределы квадрата робот не может. Необходимо переместить робота в левый нижний угол так, чтобы сумма чисел в клетках, через которые прошёл робот (включая начальную и конечную), была максимальной. В ответе запишите максимально возможную сумму.
Исходные данные записаны в электронной таблице.
Задание 18
Пример входных данных (для таблицы размером 4 × 4):
4 | 21 | −36 | 11 |
37 | −12 | 29 | 7 |
−30 | 24 | −1 | −5 |
8 | −8 | 9 | 21 |
Для указанных входных данных ответом будет число 79 (робот проходит через клетки с числами 11, 7, 29, 24, 8).
30. Задание 18 № 35992
Дан квадрат 15×15 клеток, в каждой клетке которого записано целое число. В левом верхнем углу квадрата стоит робот. За один ход робот может переместиться на одну клетку вправо или на одну клетку вниз. Выходить за пределы квадрата робот не может. При этом ведётся подсчёт суммы по следующим правилам: число в очередной клетке, через которую проходит робот, включается в сумму, если оно больше числа в предыдущей клетке на пути робота. Если число в очередной клетке не больше числа в предыдущей, сумма не изменяется. Число в начальной клетке всегда включается в сумму. Необходимо переместить робота в правый нижний угол так, чтобы полученная сумма была максимальной. В ответе запишите максимально возможную сумму.
Исходные данные записаны в электронной таблице.
Задание 18
Пример входных данных (для таблицы размером 4 × 4):
44 | 42 | 89 | 37 |
18 | 35 | 50 | 20 |
6 | 41 | 26 | 64 |
7 | 9 | 70 | 85 |
Для указанных входных данных оптимальным маршрутом будет путь по клеткам 44, 42, 89, 50, 26, 70, 85. Итоговая сумма равна 44 + 89 + 70 + 85 = 288. Числа 42, 50 и 26 не включаются в сумму, так как 42
31. Задание 18 № 36031
Квадрат разлинован на N × N клеток (1 N
Определите минимальную и максимальную денежные суммы, которые заплатит Робот, пройдя из левой верхней клетки в правую нижнюю. В ответе укажите два числа: сначала минимальную сумму, затем максимальную, без разделительных знаков. Исходные данные представляют собой электронную таблицу размером N × N, каждая ячейка которой соответствует клетке квадрата.
Исходные данные записаны в электронной таблице.
Задание 18
Пример входных данных (для таблицы размером 4 × 4):
1 | 8 | 8 | 4 |
10 | 1 | 1 | 3 |
1 | 3 | 12 | 2 |
2 | 3 | 5 | 6 |
Для указанных входных данных ответом должна быть пара чисел: 22 и 41.
32. Задание 18 № 36873
Дан квадрат 15×15 клеток, в каждой клетке которого записано целое число. В левом нижнем углу квадрата стоит робот. За один ход робот может переместиться на одну клетку вправо или на одну клетку вверх. Выходить за пределы квадрата робот не может. При этом ведётся подсчёт суммы по следующим правилам: число в очередной клетке, через которую проходит робот, включается в сумму, если оно больше числа в предыдущей клетке на пути робота. Если число в очередной клетке не больше числа в предыдущей, сумма не изменяется. Число в начальной клетке всегда включается в сумму. Необходимо переместить робота в правый верхний угол так, чтобы полученная сумма была максимальной. В ответе запишите максимально возможную сумму.
Исходные данные записаны в электронной таблице.
Задание 18
Пример входных данных (для таблицы размером 4 × 4):
44 | 42 | 89 | 37 |
18 | 35 | 50 | 20 |
6 | 41 | 26 | 64 |
7 | 9 | 70 | 85 |
Для указанных входных данных оптимальным маршрутом будет путь по клеткам 7, 9, 70, 26, 50, 89, 37. Итоговая сумма равна 7 + 9 + 70 + 50 + 89 = 225. Числа 26 и 37 не включаются в сумму, так как 26
33. Задание 18 № 37153
Квадрат разлинован на N × N клеток (1 N
Исходные данные записаны в электронной таблице. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальное значение счёта, затем минимальное.
Задание 18
Пример входных данных (для таблицы размером 4 × 4):
5 | 10 | 7 | 6 |
15 | 4 | 15 | 20 |
2 | 22 | 5 | 3 |
3 | 5 | 7 | 16 |
Для указанных входных данных ответом должна быть пара чисел 78 и 53.
34. Задание 18 № 38593
Квадрат разлинован на N × N клеток (1 N вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз — в соседнюю нижнюю. Квадрат ограничен внешними стенами. Между соседними клетками квадрата также могут быть внутренние стены. Сквозь стену Робот пройти не может. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клеткам маршрута Робота. Определите максимальную и минимальную денежные суммы, которые может собрать Робот, пройдя из левой верхней клетки в правую нижнюю.
В ответе укажите два числа — сначала максимальную сумму, затем минимальную.
18.xlsx
Исходные данные представляют собой электронную таблицу размером N × N, каждая ячейка которой соответствует клетке квадрата. Внутренние и внешние стены обозначены утолщенными линиями.
Пример входных данных:
1 | 8 | 8 | 4 |
10 | 1 | 1 | 3 |
1 | 3 | 12 | 2 |
2 | 3 | 5 | 6 |
Для указанных входных данных ответом должна быть пара чисел 38 и 22.
35. Задание 18 № 38952
Робот стоит в левом верхнем углу прямоугольного поля, в каждой клетке которого записано натуральное число. За один ход робот может переместиться на одну клетку вправо или на одну клетку вниз. Выходить за пределы поля робот не может. В начальный момент запас энергии робота равен числу, записанному в стартовой клетке. После каждого шага робота запас энергии изменяется по следующим правилам: если число в очередной клетке больше, чем в предыдущей, запас увеличивается на величину этого числа, если меньше — уменьшается на эту же величину.
Определите максимальный и минимальный запас энергии, который может быть у робота после перехода в правую нижнюю клетку поля. В ответе запишите два числа: сначала максимально возможное значение, затем минимальное.
Исходные данные записаны в электронной таблице.
Задание 18
Пример входных данных (для таблицы размером 4 × 4):
200 | 8 | 69 | 50 |
87 | 35 | 7 | 17 |
32 | 1 | 9 | 32 |
44 | 12 | 80 | 43 |
При указанных входных данных максимальное значение получается при движении по маршруту 200 − 8 + 69 − 7 + 17 + 32 + 43 = 346, а минимальное при движении по маршруту 200 − 87 − 35 − 7 + 9 + 80 − 43 = 117.
Ответ:
36. Задание 18 № 39247
Робот стоит в левом верхнем углу прямоугольного поля, в каждой клетке которого записано натуральное число. За один ход робот может переместиться на одну клетку вправо или на одну клетку вниз. Выходить за пределы поля робот не может. В начальный момент запас энергии робота равен числу, записанному в стартовой клетке. После каждого шага робота запас энергии изменяется по следующим правилам: если число в очередной клетке меньше, чем в предыдущей, запас увеличивается на величину этого числа, если больше — уменьшается на эту же величину.
Определите максимальный и минимальный запас энергии, который может быть у робота после перехода в правую нижнюю клетку поля. В ответе запишите два числа: сначала максимально возможное значение, затем минимальное.
Исходные данные записаны в электронной таблице.
Задание 18
Пример входных данных (для таблицы размером 4 × 4):
200 | 8 | 69 | 50 |
87 | 35 | 7 | 17 |
32 | 1 | 9 | 32 |
44 | 12 | 80 | 43 |
При указанных входных данных максимальное значение получается при движении по маршруту 200 + 87 + 35 + 7 − 9 − 80 + 43 = 283, а минимальное при движении по маршруту 200 + 8 − 69 + 7 − 17 − 32 − 43 = 54.
Ответ:
37. Задание 18 № 40734
Робот стоит в левом верхнем углу прямоугольного поля, в каждой клетке которого записано натуральное число. За один ход робот может переместиться на одну клетку вправо или на одну клетку вниз. Выходить за пределы поля робот не может. Между некоторыми клетками находятся стены, проходить сквозь стены робот не может.
В начальный момент запас энергии робота равен числу, записанному в стартовой клетке. При каждом шаге робот расходует энергию. При шаге вправо расход энергии равен числу, записанному в клетке, в которую переходит робот, при шаге вниз — удвоенному числу, записанному в клетке, в которую переходит робот.
Определите максимальный и минимальный запас энергии, который может быть у робота после перехода в правую нижнюю клетку поля. В ответе запишите два числа: сначала максимально возможное значение, затем минимальное.
Исходные данные записаны в электронной таблице. Стены отмечены утолщёнными линиями.
Задание 18
Пример входных данных (для таблицы размером 4 × 4):
500 | 8 | 69 | 50 |
30 | 35 | 57 | 17 |
32 | 1 | 9 | 32 |
44 | 12 | 80 | 43 |
При указанных входных данных максимальное значение получается при движении по маршруту
500 − 8 − 2 · 35 − 2 · 1 − 2 · 12 − 80 − 43 = 273,
а минимальное при движении по маршруту
500 − 8 − 69 − 2 · 57 − 17 − 2 · 32 − 2 · 43 = 142.
Ответ:
38. Задание 18 № 40993
Робот стоит в левом верхнем углу прямоугольного поля, в каждой клетке которого записано натуральное число. За один ход робот может переместиться на одну клетку вправо или на одну клетку вниз. Выходить за пределы поля робот не может. Между некоторыми клетками находятся стены, проходить сквозь стены робот не может.
В начальный момент запас энергии робота равен числу, записанному в стартовой клетке. При каждом шаге робот расходует энергию. При шаге вниз расход энергии равен числу, записанному в клетке, в которую переходит робот, при шаге вправо — удвоенному числу, записанному в клетке, в которую переходит робот.
Определите максимальный и минимальный запас энергии, который может быть у робота после перехода в правую нижнюю клетку поля. В ответе запишите два числа: сначала максимально возможное значение, затем минимальное.
Исходные данные записаны в электронной таблице. Стены отмечены утолщёнными линиями.
Задание 18
Пример входных данных (для таблицы размером 4 × 4):
500 | 8 | 69 | 50 |
30 | 35 | 57 | 17 |
32 | 1 | 9 | 32 |
44 | 12 | 80 | 43 |
При указанных входных данных максимальное значение получается при движении по маршруту
500 − 2 · 8 − 35 − 2 · 57 − 2 · 17 − 32 − 43 = 226,
а минимальное при движении по маршруту
500 − 30 − 32 − 44 − 2 · 12 − 2 · 80 − 2 · 43 = 124.
Ответ: