СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до 14.05.2025

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Презентация " Теоремы Синусов и Косинусов"

Категория: Математика

Нажмите, чтобы узнать подробности

Работа учащихся к урокам

математики

Просмотр содержимого документа
«Презентация " Теоремы Синусов и Косинусов"»

Теорема косинусов и синусов

Теорема косинусов и синусов

Стартуем!!!

Стартуем!!!

Утверждения, обобщающие теорему Пифагора и эквивалентные теореме косинусов, были сформулированы отдельно для случаев острого и тупого угла в 12 и 13 предложениях II книги «Начал» Евклида.
  • Утверждения, обобщающие теорему Пифагора и эквивалентные теореме косинусов, были сформулированы отдельно для случаев острого и тупого угла в 12 и 13 предложениях II книги «Начал» Евклида.
Утверждения, эквивалентные теореме косинусов для сферического треугольника, применялись в сочинениях математиков стран Средней Азии. Теорему косинусов для сферического треугольника в привычном нам виде сформулировал Региомонтан, назвав её «теоремой Альбатегния» (по имени ал-Баттани).
  • Утверждения, эквивалентные теореме косинусов для сферического треугольника, применялись в сочинениях математиков стран Средней Азии. Теорему косинусов для сферического треугольника в привычном нам виде сформулировал Региомонтан, назвав её «теоремой Альбатегния» (по имени ал-Баттани).
В Европе теорему косинусов популяризовал Франсуа Виет в XVI столетии. В начале XIX столетия её стали записывать в принятых по сей день алгебраических обозначениях.
  • В Европе теорему косинусов популяризовал Франсуа Виет в XVI столетии. В начале XIX столетия её стали записывать в принятых по сей день алгебраических обозначениях.
Теорема косинусов: A с b B C а Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними

Теорема косинусов:

A

с

b

B

C

а

Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними

Самое древнее доказательство для теоремы синусов на плоскости описано в книге Насир ад-Дин Ат-Туси «Трактат о полном четырёхстороннике» написанной в XIII веке. Теорема синусов для сферического треугольника была доказана математиками средневекового Востока ещё в X веке. В труде Ал-Джайяни XI века «Книга о неизвестных дугах сферы» приводилось общее доказательство теоремы синусов на сфере  Насир ад-Дин Ат-Туси 
  • Самое древнее доказательство для теоремы синусов на плоскости описано в книге Насир ад-Дин Ат-Туси «Трактат о полном четырёхстороннике» написанной в XIII веке. Теорема синусов для сферического треугольника была доказана математиками средневекового Востока ещё в X веке. В труде Ал-Джайяни XI века «Книга о неизвестных дугах сферы» приводилось общее доказательство теоремы синусов на сфере

Насир ад-Дин Ат-Туси 

A Теорема синусов : с b B C а Стороны треугольника пропорциональны синусам противолежащих углов

A

Теорема синусов :

с

b

B

C

а

Стороны треугольника пропорциональны синусам противолежащих углов

Замечание:  Можно доказать, что отношение стороны треугольника к синусу противолежащего угла равно диаметру описанной окружности. Следовательно, для любого треугольника ABC со сторонами AB=c, BC=a, CA=b имеют место равенства    Где R – радиус описанной окружности.
  • Замечание: Можно доказать, что отношение стороны треугольника к синусу противолежащего угла равно диаметру описанной окружности. Следовательно, для любого треугольника ABC со сторонами AB=c, BC=a, CA=b имеют место равенства
  • Где R – радиус описанной окружности.
M 1) Запишите теорему синусов для данного треугольника: N K 2) Запишите теорему косинусов для вычисления стороны МК:

M

1) Запишите теорему синусов для данного треугольника:

N

K

2) Запишите теорему косинусов для вычисления стороны МК:

Найдите угол В. А В 4 С 15

Найдите угол В.

А

В

4

С

15

А Найдите длину стороны ВС. 3 С В 15

А

Найдите длину стороны ВС.

3

С

В

15

Спасибо за внимание! :-)

Спасибо за внимание! :-)


Скачать

Рекомендуем курсы ПК и ППК для учителей

Вебинар для учителей

Свидетельство об участии БЕСПЛАТНО!

Закрыть через 4 секунд
Комплекты для работы учителя