Муниципальное бюджетное общеобразовательное учреждение
«Средняя школа № 36 имени генерала А. М. Городнянского»
города Смоленска
Диофант и диофантовы уравнения
2016г.
Целью моей работы является:
- Исследовать варианты решения уравнений с одной неизвестной;
- Исследовать варианты уравнений с двумя неизвестными;
- Найти общие закономерности результатов решений поставленных задач.
Задача.
- У мальчика было 50 р., на которые он хотел купить почтовые марки. В киоске имелись марки по 4 р. и по 3 р., но у киоскера совсем не было сдачи. Помогите мальчику и киоскеру выйти из создавшегося затруднения.
Решение. Пусть марок по 4 р. х штук, по 3 р. – у штук.
Всего имеется 50 р., отсюда
уравнение: 4 х + 3 у = 50
Эта задача имеет не одно, а несколько решений.
х
у
2
5
14
8
10
11
6
2
- Диофант пытался ответить на следующий вопрос: « Дано уравнение с целыми коэффициентами. Имеет ли оно целые решения ?»
- Диофантовы уравнения - алгебраические уравнения или их системы с целыми коэффициентами, имеющие число неизвестных, превосходящее число уравнений, и у которых разыскиваются целые или рациональные решения. Примеры диофантовых уравнений: ax+by=c, x 2 +y 2 =d 2 .
- Диофант пытался ответить на следующий вопрос: « Дано уравнение с целыми коэффициентами. Имеет ли оно целые решения ?»
- Диофантовы уравнения - алгебраические уравнения или их системы с целыми коэффициентами, имеющие число неизвестных, превосходящее число уравнений, и у которых разыскиваются целые или рациональные решения. Примеры диофантовых уравнений: ax+by=c, x 2 +y 2 =d 2 .
Арифметика…
Основное произведение Диофанта Александрийского– «Арифметика» в тринадцати книгах. К сожалению, до наших дней сохранились только шесть первых книг из тринадцати. «Арифметика» Диофанта – это сборник задач их всего 189, каждая из которых снабжена решением или несколькими способами решения и необходимыми пояснениями. Поэтому, с первого взгляда, кажется, что она не является теоретическим произведением. Однако, при внимательном чтении видно, что задачи тщательно подобраны и служат для иллюстрации вполне определенных, строго продуманных методов.
Диофантовы уравнения с одним неизвестным.
Если уравнение
с целыми коэффициентами имеет целый корень, то этот корень является делителем числа свободного члена уравнения. Таким образом, при отыскании целых корней уравнения с целыми коэффициентами достаточно испытать лишь делители свободного члена.
Например:
Решить в целых числах уравнение:
Решение. Свободный член уравнения имеет следующие делители
Среди этих чисел и будем искать целые корни данного уравнения. Подстановкой
убеждаемся, что корнями являются числа 1 и – 3.
Неопределенные уравнения II-ой степени вида x 2 + y 2 = z 2
Существует еще одна частная задача на неопределенные уравнения – теперь уже второй степени, возникшая примерно за две тысячи лет до Диофанта в Древнем Египте.
Если стороны треугольника пропорциональны числам 3, 4 и 5, то этот треугольник – прямоугольный. Этот факт использовали для построения на местности прямых углов. Поступали довольно просто. На веревке на равном расстоянии друг от друга завязывали узлы
В точке С где надо было построить прямой угол, забивали колышек, веревку натягивали в направлении, нужном строителям, забивали колышек в точке В при СВ = 4 и натягивали веревку так, чтобы АС = 3 и АВ = 5. Треугольник с такими длинами сторон называют египетским. Мы, конечно, понимаем, что безошибочность такого построения следует из теоремы, обратной теореме Пифагора. Действительно,
3 2 + 4 2 = 5 2 . Говоря иначе, числа 3, 4, 5 – корни уравнения
Запишем подряд квадраты натуральных чисел, а под ними разность между последовательными квадратами:
1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196 … .
3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27 … .
Найдем в нижнем ряду квадратные числа. Первое из них 3 2 = 9 , над ним 4 2 = 16 и 5 2 =25 , знакомая нам тройка 3, 4, 5.Следующее квадратное число в нижней строке 25, ему соответствует 144 и 169, отсюда находим вторую известную нам тройку 5, 12, 13. Отсюда мы имеем право сформулировать такую теорему:
Каждое нечетное число есть разность двух последовательных квадратов
Числа, найденные по такому правилу, всегда будут составлять решение интересующего нас неопределенного уравнения. Это уравнение будем называть «уравнением Пифагора», а его решения – «пифагоровыми тройками». По этому правилу можно получить уже известные нам тройки :
0, y0, то значениями параметра t могут быть лишь t=0 и t=1. При t=0 получаем х=7, у=1, а при t=1 имеем: х=3, у=8. Таким образом, решений два, т.е. возможны два варианта покупки фломастеров и карандашей на сумму 53 рубля. " width="640"
Куплены фломастеры по 7 рублей и карандаши по 4 рубля за штуку, всего на сумму 53 рубля. Сколько куплено фломастеров и карандашей?
Решение:
Пусть х – число фломастеров, у – число карандашей, тогда по условию 7х+ 4у=53. Частное решение этого линейного диофантова уравнения есть: х=7, у=1. Тогда общее решение его имеет вид: х=7-4t, y=1+7t. Однако по условию х 0, y0, то значениями параметра t могут быть лишь t=0 и t=1. При t=0 получаем х=7, у=1, а при t=1 имеем: х=3, у=8. Таким образом, решений два, т.е. возможны два варианта покупки фломастеров и карандашей на сумму 53 рубля.
Решить диофантово уравнение: 23х-13у+7z=5
Выбираем наименьший по модулю коэффициенты x,y,z. В нашем случае это 7, затем остальные коэффициенты 23 и 13, при неизвестных представляем в виде: 23= 7*3+2, 13=7*2+(-1), тогда преобразуем уравнение следующим образом: (7*3+2)х-(7*2-1)у+7z=5,
Откуда 2х+у+7(3х-2у+z)=5. Полагая теперь t= 3х-2у+z, получаем уравнение: 2х+у+7t=5.
Далее находим у из последнего равенства, т.е. у=5-2х-7t и z=-3x+2у+t. Подставляя в последние равенство выражение для у, находим, что z=-3х+2(5-2х-7t)+t=-7х -13t+10.
Таким образом, окончательно получаем: У= 5-2х-7t, z=10-7х-13t, где параметры х, и Є Z дают общее решение предположенного диофантова уравнения. Этот метод «наименьшего коэффициента» применим и для решения диофантовых уравнений вида ax+by=c.
Найти все пары натуральных чисел, удовлетворяющих уравнению
Разложим левую часть уравнения на множители и запишем уравнение вида: (х-у)(х+у)=69 Т.к. делителями числа 69 являются числа 1, 3, 23 и 69, то 69 можно получить двумя способами: 69=1*69 и 69=3*23. Учитывая, что , получим две системы уравнений, решив которые мы сможем найти искомые числа:
или
Первая система имеет решение х=35, у=34 , а вторая система имеет решение х=13, у=10.
Ответ: (35;34) и (13;10)
Заключение:
В заключительной части своей работы мне особенно хотелось подчеркнуть, что изучив специальную литературу, посвященную диофантовым уравнениям, я расширил свои математические навыки и получил дополнительные знания о самом Диофанте, также о влиянии его научных трудов на дальнейшее развитие научной математической мысли. Именно благодаря методам Диофанта были разгаданы методы самого Архимеда. Методы Диофанта растягиваются еще на несколько сотен лет, переплетаясь с развитием теории алгебраических функций и алгебраической геометрии. Развитие идей Диофанта можно проследить вплоть до работ Анри Пуанкаре и Андре Вейля. Именно Диофант открыл нам мир арифметики и алгебры. Поэтому история Диофантова анализа показалась мне особенно интересной.
- Диофантовы уравнения и их решения и по сей день остаются актуальной темой.
- Умение решать такие уравнения позволяет найти остроумные и сравнительно простые решения казалось бы «неразрешимых» задач, а в практической деятельности значительно сэкономить затраты средств и времени.
- Проведя данное исследование, я овладел новыми математическими навыками, рассмотрел некоторые методы решения неопределенных уравнений.
- Изучая диофантовы уравнения, показал практическое им применение, решив несколько задач.