СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Презентация на тему "Великие математики"

Категория: Математика

Нажмите, чтобы узнать подробности

Презентация на тему "Великие математики" может быть использована как на уроках математики, так и при проведении внеклассных мероприятий

Просмотр содержимого документа
«Презентация на тему "Великие математики"»

Великие математики

Великие математики

ИСААК НЬЮТОН (1643-1727) В 1680 г. Ньютон начинает работу над основным своим сочинением «Математические начала натуральной философии», в котором он задумал изложить свою систему мира. Выход книги был крупным событием в истории естествознания. В ней все величественное здание механики строится на основании аксиом движения, которые теперь известны под названием законов Ньютона.

ИСААК НЬЮТОН (1643-1727)

  • В 1680 г. Ньютон начинает работу над основным своим сочинением «Математические начала натуральной философии», в котором он задумал изложить свою систему мира. Выход книги был крупным событием в истории естествознания. В ней все величественное здание механики строится на основании аксиом движения, которые теперь известны под названием законов Ньютона.
В «Началах» Ньютон чисто математически выводит все основные известные в то время факты механики земных и небесных тел, законы движения точки и твердого тела, кеплеровы законы движения планет. Многие математические труды Ньютона так и не были своевременно опубликованы. Первые его сравнительно подробные публикации относятся к 1704 г. Это работы «Перечисление кривых третьего порядка», где описаны свойства этих кривых, и «Рассуждения о квадратуре круга», посвященные дифференциальному и интегральному исчислениям.
  • В «Началах» Ньютон чисто математически выводит все основные известные в то время факты механики земных и небесных тел, законы движения точки и твердого тела, кеплеровы законы движения планет. Многие математические труды Ньютона так и не были своевременно опубликованы. Первые его сравнительно подробные публикации относятся к 1704 г. Это работы «Перечисление кривых третьего порядка», где описаны свойства этих кривых, и «Рассуждения о квадратуре круга», посвященные дифференциальному и интегральному исчислениям.
РЕНЕ ДЕКАРТ (1596-1650) Декарт отводил математике особое место в своей системе, он считал ее принципы установления истины образцом для других наук. Главное достижение Декарта-построение аналитической геометрии (термин предложил И. Ньютон, см. Геометрия), в которой геометрические задачи переводились на язык алгебры при помощи метода координат.

РЕНЕ ДЕКАРТ (1596-1650)

  • Декарт отводил математике особое место в своей системе, он считал ее принципы установления истины образцом для других наук.
  • Главное достижение Декарта-построение аналитической геометрии (термин предложил И. Ньютон, см. Геометрия), в которой геометрические задачи переводились на язык алгебры при помощи метода координат.
 Нужно отметить, что у Декарта в точном виде еще не было того, что сегодня называется декартовой системой координат. Декарт начал с того, что перевел на алгебраический язык задачи на построение циркулем и линейкой (см. Геометрические построения), затем обнаружил, что любимые древними конические сечения-это то же самое, что кривые второго порядка, т.е. с алгебраической точки зрения следующий по сложности за прямыми (кривыми первого порядка) класс кривых. При переходе на алгебраический язык многие трудные геометрические задачи становятся почти тривиальными.
  • Нужно отметить, что у Декарта в точном виде еще не было того, что сегодня называется декартовой системой координат. Декарт начал с того, что перевел на алгебраический язык задачи на построение циркулем и линейкой (см. Геометрические построения), затем обнаружил, что любимые древними конические сечения-это то же самое, что кривые второго порядка, т.е. с алгебраической точки зрения следующий по сложности за прямыми (кривыми первого порядка) класс кривых. При переходе на алгебраический язык многие трудные геометрические задачи становятся почти тривиальными.
Немалой заслугой Декарта было введение удобных обозначений, сохранившихся до наших дней: латинских букв х, у, z—для неизвестных; а, Ь, с-для коэффициентов, х2, у5, а7 -для степеней. Он сформулировал основную теорему алгебры: «число корней алгебраического уравнения равно его степени», доказательство которой было получено лишь в конце XVIII в. К.Ф. Гауссом.
  • Немалой заслугой Декарта было введение удобных обозначений, сохранившихся до наших дней: латинских букв х, у, z—для неизвестных; а, Ь, с-для коэффициентов, х2, у5, а7 -для степеней. Он сформулировал основную теорему алгебры: «число корней алгебраического уравнения равно его степени», доказательство которой было получено лишь в конце XVIII в. К.Ф. Гауссом.
Диофант Александрийский (III Век) Диофант был первым греческим математиком, который рассматривал дроби наравне с другими числами. В наше время под «диофантовыми уравнениями» обычно понимают уравнения с целыми коэффициентами, решения которых требуется найти среди целых чисел. Диофант также одним из первых развивал математические обозначения.

Диофант Александрийский (III Век)

  • Диофант был первым греческим математиком, который рассматривал дроби наравне с другими числами. В наше время под «диофантовыми уравнениями» обычно понимают уравнения с целыми коэффициентами, решения которых требуется найти среди целых чисел. Диофант также одним из первых развивал математические обозначения.
Бо́льшая часть труда — это сборник задач с решениями (в сохранившихся шести книгах их всего 189), умело подобранных для иллюстрации общих методов. Главная проблематика Арифметики — нахождение положительных рациональных решений неопределённых уравнений. Рациональные числа трактуются Диофантом так же, как и натуральные, что не типично для античных математиков. Лист из Арифметики (рукопись XIV века). В верхней строке записано уравнение: x^3 \cdot 8 - x^2 \cdot 16 = x^3
  • Бо́льшая часть труда — это сборник задач с решениями (в сохранившихся шести книгах их всего 189), умело подобранных для иллюстрации общих методов. Главная проблематика Арифметики — нахождение положительных рациональных решений неопределённых уравнений. Рациональные числа трактуются Диофантом так же, как и натуральные, что не типично для античных математиков.

Лист из Арифметики (рукопись XIV века). В верхней строке записано уравнение: x^3 \cdot 8 - x^2 \cdot 16 = x^3

Евклид (ок.325 года до н.э.  до 265 года до н.э.) Евклид — первый математик Александрийской школы. Его главная работа «Начала» (Στοιχεῖα, в латинизированной форме — «Элементы») содержит изложение планиметрии, стереометрии и ряда вопросов теории чисел; в ней он подвёл итог предшествующему развитию Древнегреческой математики и создал фундамент дальнейшего развития математики. Из других сочинений по математике надо отметить «О делении фигур», сохранившееся в арабском переводе, 4 книги «Конические сечения»

Евклид (ок.325 года до н.э. до 265 года до н.э.)

  • Евклид — первый математик Александрийской школы. Его главная работа «Начала» (Στοιχεῖα, в латинизированной форме — «Элементы») содержит изложение планиметрии, стереометрии и ряда вопросов теории чисел; в ней он подвёл итог предшествующему развитию Древнегреческой математики и создал фундамент дальнейшего развития математики. Из других сочинений по математике надо отметить «О делении фигур», сохранившееся в арабском переводе, 4 книги «Конические сечения»
Создал свой учебник по геометрии, включил в него многое из того, что было создано его предшественниками, обработав этот материал и сведя его воедино.

Создал свой учебник по геометрии, включил в него многое из того, что было создано его предшественниками, обработав этот материал и сведя его воедино.

Пифагор Самосский (прибл. 570 до н. э.  прим. 490 до н. э.) Теорема Пифагора гласит: «Квадрат, построенный на гипотенузе прямоугольного треугольника, равновелик сумме квадратов, построенных на его катетах». Простейшее доказательство теоремы получается в простейшем случае равнобедренного прямоугольного треугольника. Вероятно, с него и начиналась теорема. В самом деле, достаточно просто посмотреть на мозаику равнобедренных прямоугольных треугольников, чтобы убедиться в справедливости теоремы.

Пифагор Самосский (прибл. 570 до н. э. прим. 490 до н. э.)

  • Теорема Пифагора гласит: «Квадрат, построенный на гипотенузе прямоугольного треугольника, равновелик сумме квадратов, построенных на его катетах». Простейшее доказательство теоремы получается в простейшем случае равнобедренного прямоугольного треугольника. Вероятно, с него и начиналась теорема. В самом деле, достаточно просто посмотреть на мозаику равнобедренных прямоугольных треугольников, чтобы убедиться в справедливости теоремы.
Архимед (287 до н. э.- 212 до н. э.) По словам Плутарха, Архимед был просто одержим математикой. Он забывал о пище, совершенно не заботился о себе. Работы Архимеда относились почти ко всем областям математики того времени: ему принадлежат замечательные исследования по геометрии, арифметике, алгебре. Так, он нашёл все полуправильные многогранники, которые теперь носят его имя, значительно развил учение о конических сечениях, дал геометрический способ решения кубических уравнений вида x^2 (a \pm x) = b, корни которых он находил с помощью пересечения параболы и гиперболы.

Архимед (287 до н. э.- 212 до н. э.)

  • По словам Плутарха, Архимед был просто одержим математикой. Он забывал о пище, совершенно не заботился о себе.
  • Работы Архимеда относились почти ко всем областям математики того времени: ему принадлежат замечательные исследования по геометрии, арифметике, алгебре. Так, он нашёл все полуправильные многогранники, которые теперь носят его имя, значительно развил учение о конических сечениях, дал геометрический способ решения кубических уравнений вида x^2 (a \pm x) = b, корни которых он находил с помощью пересечения параболы и гиперболы.
 Архимед провёл и полное исследование этих уравнений, то есть нашёл, при каких условиях они будут иметь действительные положительные различные корни и при каких корни будут совпадать. Однако главные математические достижения Архимеда касаются проблем, которые сейчас относят к области математического анализа. Греки до Архимеда сумели определить площади многоугольников и круга, объём призмы и цилиндра, пирамиды и конуса. Но только Архимед нашёл гораздо более общий метод вычисления площадей или объёмов; для этого он усовершенствовал и виртуозно применял метод исчерпывания Евдокса Книдского. В своей работе «Послание к Эратосфену о методе» (иногда называемой «Метод механических теорем») он использовал бесконечно малые для вычисления объёмов. Идеи Архимеда легли впоследствии в основу интегрального исчисления.
  • Архимед провёл и полное исследование этих уравнений, то есть нашёл, при каких условиях они будут иметь действительные положительные различные корни и при каких корни будут совпадать.
  • Однако главные математические достижения Архимеда касаются проблем, которые сейчас относят к области математического анализа. Греки до Архимеда сумели определить площади многоугольников и круга, объём призмы и цилиндра, пирамиды и конуса. Но только Архимед нашёл гораздо более общий метод вычисления площадей или объёмов; для этого он усовершенствовал и виртуозно применял метод исчерпывания Евдокса Книдского. В своей работе «Послание к Эратосфену о методе» (иногда называемой «Метод механических теорем») он использовал бесконечно малые для вычисления объёмов. Идеи Архимеда легли впоследствии в основу интегрального исчисления.
Архимед сумел установить, что сфера и конусы с общей вершиной, вписанные в цилиндр, соотносятся следующим образом: два конуса : сфера : цилиндр как 1:2:3. Лучшим своим достижением он считал определение поверхности и объёма шара — задача, которую до него никто решить не мог. Архимед просил выбить на своей могиле шар, вписанный в цилиндр. Шар, вписанный в цилиндр Квадратура сегмента параболы В сочинении Квадратура параболы Архимед доказал, что площадь сегмента параболы, отсекаемого от неё прямой, составляет 4/3 от площади вписанного в этот сегмент треугольника (см. рисунок). Для доказательства Архимед подсчитал сумму бесконечного ряда:    Каждое слагаемое ряда — это общая площадь треугольников, вписанных в неохваченную предыдущими членами ряда часть сегмента параболы. Помимо перечисленного, Архимед вычислил площадь поверхности для сегмента шара и витка открытой им «спирали Архимеда», определил объёмы сегментов шара, эллипсоида, параболоида и двуполостного гиперболоида вращения.
  • Архимед сумел установить, что сфера и конусы с общей вершиной, вписанные в цилиндр, соотносятся следующим образом: два конуса : сфера : цилиндр как 1:2:3.
  • Лучшим своим достижением он считал определение поверхности и объёма шара — задача, которую до него никто решить не мог. Архимед просил выбить на своей могиле шар, вписанный в цилиндр.
  • Шар, вписанный в цилиндр
  • Квадратура сегмента параболы
  • В сочинении Квадратура параболы Архимед доказал, что площадь сегмента параболы, отсекаемого от неё прямой, составляет 4/3 от площади вписанного в этот сегмент треугольника (см. рисунок). Для доказательства Архимед подсчитал сумму бесконечного ряда:
  • Каждое слагаемое ряда — это общая площадь треугольников, вписанных в неохваченную предыдущими членами ряда часть сегмента параболы.
  • Помимо перечисленного, Архимед вычислил площадь поверхности для сегмента шара и витка открытой им «спирали Архимеда», определил объёмы сегментов шара, эллипсоида, параболоида и двуполостного гиперболоида вращения.


Скачать

Рекомендуем курсы ПК и ППК для учителей

Вебинар для учителей

Свидетельство об участии БЕСПЛАТНО!