Просмотр содержимого документа
«презентация о Евклиде»
Евклид
Проект выполняла
ученица 7Б класса
Филиппова Анна
Евклид — древнегреческий математик, автор первого из дошедших до нас теоретических трактатов по математике. Биографические сведения о Евклиде крайне скудны. Достоверным можно считать лишь то, что его научная деятельность протекала в Александрии в 3 в. до н. э.
Начала Евклида
Основное сочинение Евклида называется
Начала . Книги с таким же названием,
в которых последовательно излагались
все основные факты геометрии и
теоретической арифметики, составлялись
ранее Гиппократом Хиосским , Леонтом и
Февдием . Однако Начала Евклида
вытеснили все эти сочинения из
обихода и в течение более чем двух
тысячелетий оставались базовым
учебником геометрии. Создавая свой
учебник, Евклид включил в него многое
из того, что было создано его
предшественниками, обработав этот
материал и сведя его воедино
.
Начала состоят из тринадцати книг. Первая и некоторые другие книги предваряются списком определений. Первой книге предпослан также список постулатов и аксиом. Как правило, постулаты задают базовые построения (напр., «требуется, чтобы через любые две точки можно было провести прямую»), а аксиомы — общие правила вывода при оперировании с величинами (напр., «если две величины равны третьей, они равны между собой»).
В I книге изучаются свойства треугольников и параллелограммов; эту книгу венчает знаменитая теорема Пифагора для прямоугольных треугольников. Книга II, восходящая к пифагорейцам, посвящена так называемой «геометрической алгебре». В III и IV книгах излагается геометрия окружностей, а также вписанных и описанных многоугольников; при работе над этими книгами Евклид мог воспользоваться сочинениями Гиппократа Хиосского
В V книге вводится общая теория пропорций, построенная Евдоксом Книдским , а в VI книге она прилагается к теории подобных фигур. VII—IX книги посвящены теории чисел и восходят к пифагорейцам; автором VIII книги, возможно, был Архит Тарентский. В этих книгах рассматриваются теоремы о пропорциях и геометрических прогрессиях, вводится метод для нахождения наибольшего общего делителя двух чисел, строится чётные совершенные числа , доказывается бесконечность множества простых чисел . В X книге, представляющей собой самую объёмную и сложную часть Начал , строится классификация иррациональностей; возможно, что её автором является Теэтет Афинский .
XI книга содержит основы стереометрии. В XII книге с помощью метода исчерпывания доказываются теоремы об отношениях площадей кругов, а также объёмов пирамид и конусов; автором этой книги по общему признанию является Евдокс Книдский . Наконец, XIII книга посвящена построению пяти правильных многогранников; считается, что часть построений была разработана Теэтетом Афинским.
Спасибо за внимание!