СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Программа и КТП по математике 5 класс

Категория: Математика

Нажмите, чтобы узнать подробности

 

Рабочая программа составлена на основе:

  1. Федеральный закон от 29.12.2012г. № 273-ФЗ «Общее образование в Российской Федерации».
  2. «Федеральный Государственный образовательный стандарт основного общего образования». (Приказ  Министерства образования и науки Российской Федерации № 1897 от 17.12. 2010 г.)
  3.  «Примерные программы основного общего образования. Математика» М.: Просвещение, 2011, учебного плана на текущий учебный год,   с учетом авторской программы по математике С.М. Никольского, М.К.Потапова, Н.Н.Решетникова, А.В.Шевкина.
  4. Учебник «Математика» 5 класс, авторы С.М Никольский, М.К. Потапов, Н.Н. Решетников, А.В. Шевкин.

 

Программа рассчитана на 170 часов при 5 часах в неделю.

Просмотр содержимого документа
«Программа и КТП по математике 5 класс»

Муниципальное бюджетное общеобразовательное учреждение «Ковыльненская средняя общеобразовательная школа им.А.Смолко» Раздольненского района Республики Крым


РАССМОТРЕНО

Руководитель ШМО

_______/________________

подпись ФИО

Протокол № _________

заседания ШМО

от ____ _____________2018 г.


СОГЛАСОВАНО

Заместитель директора по УВР МБОУ «Ковыльненская школа им.А.Смолко»

_____________О.И.Трифанова

подпись

______ _____________2018 г


УТВЕРЖДАЮ

Директор МБОУ «Ковыльненская школа им.А.Смолко»

_________________Н.С. Свирская

подпись ФИО

Приказ № ___________

от ____ _______________ 2018 г



РАБОЧАЯ программа

по МАТЕМАТИКЕ


Свирская Наталья Сергеевна

Ф.И.О. учителя-разработчика

Уровень: Базовый


Класс 5


2018/2019 учебный год



Количество часов:

  • Всего – 170 часов, в неделю – 5 часов







Ковыльное 2018 г.


Пояснительная записка


Рабочая программа составлена на основе:

  1. Федеральный закон от 29.12.2012г. № 273-ФЗ «Общее образование в Российской Федерации».

  2. «Федеральный Государственный образовательный стандарт основного общего образования». (Приказ Министерства образования и науки Российской Федерации № 1897 от 17.12. 2010 г.)

  3. «Примерные программы основного общего образования. Математика» М.: Просвещение, 2011, учебного плана на текущий учебный год, с учетом авторской программы по математике С.М. Никольского, М.К.Потапова, Н.Н.Решетникова, А.В.Шевкина.

  4. Учебник «Математика» 5 класс, авторы С.М Никольский, М.К. Потапов, Н.Н. Решетников, А.В. Шевкин.


Программа рассчитана на 170 часов при 5 часах в неделю.


  1. Планируемые результаты освоения учебного курса.


Изучение математики в 5-9 классе позволяет достичь следующих результатов.

в личностном направлении:

1) умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;

2) критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;

3) представление о математической науке как сфере человеческой деятельности, об этапах ее развития, о ее значимости для развития цивилизации;

4) креативность мышления, инициатива, находчивость, активность при решении математических задач;

5) умение контролировать процесс и результат учебной математической деятельности;

6) способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;

в метапредметном направлении:

1) первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;

2) умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;

3) умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять ее в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;

4) умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;

5) умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;

6) умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;

7) понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;

8) умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;

9) умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;

в предметном направлении:

1) овладение базовым понятийным аппаратом по основным разделам содержания; представление об основных изучаемых понятиях (число, геометрическая фигура, уравнение, функция, вероятность) как важнейших математических моделях, позволяющих описывать и изучать реальные процессы и явления;

2) умение работать с математическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли в устной и письменной речи с применением математической терминологии и символики, использовать различные языки математики, проводить классификации, логические обоснования, доказательства математических утверждений;

3) развитие представлений о числе и числовых системах от натуральных до действительных чисел; овладение навыками устных, письменных, инструментальных вычислений;

4) овладение символьным языком алгебры, приемами выполнения тождественных преобразований рациональных выражений, решения уравнений, систем уравнений, неравенств и систем неравенств; умение использовать идею координат на плоскости для интерпретации уравнений, неравенств, систем; умение применять алгебраические преобразования, аппарат уравнений и неравенств для решения задач из различных разделов курса;

5) овладение системой функциональных понятий, функциональным языком и символикой; умение использовать функционально-графические представления для описания и анализа реальных зависимостей;

6) овладение основными способами представления и анализа статистических данных; наличие представлений о статистических закономерностях в реальном мире и о различных способах их изучения, о вероятностных моделях;

7) овладение геометрическим языком, умение использовать его для описания предметов окружающего мира; развитие пространственных представлений и изобразительных умений, приобретение навыков геометрических построений;

8) усвоение систематических знаний о плоских фигурах и их свойствах, а также на наглядном уровне – о простейших пространственных телах, умение применять систематические знания о них для решения геометрических и практических задач;

9) умение измерять длины отрезков, величины углов, использовать формулы для нахождения периметров, площадей и объемов геометрических фигур;

10) умение применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочных материалов, калькулятора, компьютера.

Личностные результаты

Личностные универсальные учебные действия

В рамках когнитивного компонента будут сформированы:

• представления о фактах, иллюстрирующих важные этапы развития математики (изобретение десятичной нумерации, старинные системы записи чисел, старинные системы мер; происхождение геометрии из практических потребностей людей);

• ориентация в системе требований при обучении математике;

В рамках ценностного и эмоционального компонентов будут сформированы:

• позитивное, эмоциональное восприятие математических объектов, рассуждений, решений задач, рассматриваемых проблем.

В рамках деятельностного (поведенческого) компонента будут сформированы:

• готовность и способность к выполнению норм и требований, предъявляемых на уроках математики.

Ученик получит возможность для формирования:

• выраженной устойчивой учебно-познавательной мотивации и интереса к изучению математики;

• умение выбирать желаемый уровень математических результатов;

• адекватной позитивной самооценки и Я- концепции.

Метапредметные образовательные результаты.

Регулятивные универсальные учебные действия

Ученик научится:

• совместному с учителем целеполаганию на уроках математики и в математической деятельности;

• анализировать условие задачи (для нового материала - на основе учёта выделенных учителем ориентиров действия);

• действовать в соответствии с предложенным алгоритмом, составлять несложные алгоритмы вычислений и построений;

• применять приемы самоконтроля при решении математических задач;

• оценивать правильность выполнения действия и вносить необходимые коррективы на основе имеющихся шаблонов.

Ученик получит возможность научиться:

• самостоятельно ставить учебные цели;

• видеть различные стратегии решения задач, осознанно выбирать способ решения;

• основам саморегуляции в математической деятельности в форме осознанного управления своим поведением и деятельностью, направленной на достижение поставленных целей.

Коммуникативные универсальные учебные действия

Ученик научится:

• строить речевые конструкции с использованием изученной терминологии и символики, понимать смысл поставленной задачи, осуществлять перевод с естественного языка на математический и наоборот;

• осуществлять контроль, коррекцию, оценку действий партнёра, уметь убеждать.

Ученик получит возможность научиться:

• брать на себя инициативу в решении поставленной задачи;

• задавать вопросы, необходимые для организации собственной деятельности взаимодействия с другими;

• устанавливать и сравнивать разные точки зрения, прежде чем принимать решения и делать выбор;

• отображать в речи (описание, объяснение) содержание совершаемых действий.

Познавательные универсальные учебные действия

Ученик научится:

• основам реализации проектно-исследовательской деятельности под руководством учителя (с помощью родителей);

• осуществлять поиск в учебном тексте, дополнительных источниках ответов на поставленные вопросы; выделять в нем смысловые фрагменты;

• анализировать и осмысливать тексты задач, переформулировать их условия моделировать условие с помощью схем, рисунков, таблиц, реальных предметов, строить логическую цепочку рассуждений;

• формулировать простейшие свойства изучаемых математических объектов;

• с помощью учителя анализировать, систематизировать, классифицировать изучаемые математические объекты.

Ученик получит возможность научиться:

• осуществлять выбор наиболее эффективных способов решения задач в зависимости от конкретных условий;

• самостоятельно давать определение понятиям;

• строить простейшие классификации на основе дихотомического деления (на основе отрицания).

Предметные образовательные результаты

Натуральные числа. Дроби. Рациональные числа

Ученик научится:

• понимать особенности десятичной системы счисления;

• оперировать понятиями, связанными с делимостью натуральных чисел;

• выражать числа в эквивалентных формах, выбирая наиболее подходящую в зависимости от конкретной ситуации;

• сравнивать и упорядочивать натуральные числа, обыкновенные дроби;

• выполнять действия с натуральными числами и обыкновенными дробями, сочетая устные и письменные приёмы вычислений;

• решать текстовые задачи арифметическим способом.

Ученик получит возможность научиться:

познакомиться с позиционными системами счисления с основаниями, отличными от 10;

• углубить и развить представления о натуральных числах и свойствах делимости;

• научиться использовать приёмы, рационализирующие вычисления.

Измерения, приближения, оценки

Ученик научится:

• использовать в ходе решения задач элементарные представления, связанные с приближёнными значениями величин.

Ученик получит возможность научиться:

• понять, что числовые данные, которые используются для характеристики объектов окружающего мира, являются преимущественно приближёнными.

Наглядная геометрия

Ученик научится:

• распознавать на чертежах, рисунках, моделях и в окружающем мире линии, углы, многоугольники, треугольники, четырехугольники, многогранники;

• распознавать развёртки куба, прямоугольного параллелепипеда, правильной пирамиды;

• строить развёртки куба и прямоугольного параллелепипеда;

• определять по линейным размерам развёртки фигуры линейные размеры самой фигуры и наоборот;

• вычислять объём прямоугольного параллелепипеда.

Ученик получит возможность научиться:

• вычислять объёмы пространственных геометрических фигур, составленных из прямоугольных параллелепипедов;

• углубить и развить представления о пространственных геометрических фигурах;

• применять понятие развёртки для выполнения практических расчётов.


Измерение геометрических величин

Ученик научится:

• использовать свойства измерения длин, площадей и углов при решении задач на нахождение длины отрезка, градусной меры угла;

Ученик получит возможность научиться:

• вычислять площади фигур, составленных из двух или более прямоугольников.


2. Содержание учебного курса.


1

Натуральные числа и ноль (38 ч).

Десятичная система счисления. Римская нумерация. Ряд натуральных чисел. Десятичная запись, сравнение, сложение и вычитание натуральных чисел. Законы сложения. Умножение, законы умножения. Степень с натуральным показателем. Деление нацело, деление с остатком. Числовые выражения. Решение текстовых задач.


2

Измерение величин (32 ч).

Прямая, луч, отрезок. Измерение отрезков и единицы длины. Представление натуральных чисел на координатном луче. Окружности и круг, сфера и шар. Углы, измерение углов. Треугольник, прямоугольник, квадрат, прямоугольный параллелепипед. Площадь прямоугольника, объем прямоугольного параллелепипеда. Единицы массы, времени. Решение текстовых задач.


3

Делимость натуральных чисел (18 ч).

Свойства и признаки делимости. Простые и составные числа. Делители натурального числа. Наибольший общий делитель, наименьшее общее кратное.


4

Обыкновенные дроби (68 ч).

Понятие дроби, равенство дробей (основное свойство дроби). Приведение дробей к общему знаменателю. Сравнение, сложение и вычитание любых дробей. Законы сложения. Умножение дробей, законы умножения. Деление дробей. Смешанные дроби и действия с ними. Представления дробей на координатном луче. Решение текстовых задач.


5

Повторение (14 ч).









  1. Тематическое планирование.


Название раздела.

Количество

часов.

Количество контрольных

работ.

1

Повторение

4

1

2

Натуральные числа и ноль.

38

2

3

Измерение величин.

33

2

4

Делимость натуральных чисел.

18

1

5

Обыкновенные дроби.

67

3


Повторение.

10

1