Рабочая программа «Физика» 7-9 классы

Категория: Физика

Рабочая программа «Физика» для 7-9 классов разработана в соответствии с федеральным государственным образовательным стандартом основного общего образования на основе примерной программы основного общего образования по физике и авторской программы А.В. Перышкина и др. (Перышкин А.В., Филонович Н.В., Гутник Е.М. Программа основного общего образования. Физика. 7-9 классы. Авторы: // Физика. 7-9 классы Рабочие программы / сост. Е.Н. Тихонова. – 5-е изд., перераб. - М.: Дрофа, 2015. - 400 с.)

7 класс: 2 часа / 68 часов, 8 класс: 2 часа / 68 часа, 9 класс: 2 часа / 68 часа

Просмотр содержимого документа
«Рабочая программа «Физика» 7-9 классы»

Муниципальное бюджетное общеобразовательное учреждение

городского округа Тольятти «Школа № 73»

(МБУ «Школа№73»)

Рассмотрено на заседании

Согласовано

Утверждаю к использованию

МО учителей естественно-

«_____»___________ 2016 г.

в образовательном процессе

технического цикла

Зам. директора по учебно-

Приказ №______

Протокол №___

воспитательной работе

«_______»_____________ 2016 г.

«______»________2016 г.

МБУ СОШ 73

Директор МБУ «Школа №73»

ПМО________О.В. Рябова

___________С.А. Копылова

____________ Т.Л. Ющенко






Рабочая программа

«Физика»

7 - 9 классы





Авторы-составители: О.В. Рябова, учителя физики

МБУ «Школа №73»













Тольятти

2016

Планируемые результаты изучения учебного предмета

Механические явления

Выпускник научится:

• распознавать механические явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: равномерное и равноускоренное прямолинейное движение, свободное падение тел, невесомость, равномерное движение по окружности, инерция, взаимодействие тел, передача давления твёрдыми телами, жидкостями и газами, атмосферное давление, плавание тел, равновесие твёрдых тел, колебательное движение, резонанс, волновое движение;

• описывать изученные свойства тел и механические явления, используя физические величины: путь, скорость, ускорение, масса тела, плотность вещества, сила, давление, импульс тела, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность, КПД простого механизма, сила трения, амплитуда, период и частота колебаний, длина волны и скорость её распространения; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами;

• анализировать свойства тел, механические явления и процессы, используя физические законы и принципы: закон сохранения энергии, закон всемирного тяготения, равнодействующая сила, I, II и III законы Ньютона, закон сохранения импульса, закон Гука, закон Паскаля, закон Архимеда; при этом различать словесную формулировку закона и его математическое выражение;

• различать основные признаки изученных физических моделей: материальная точка, инерциальная система отсчёта;

• решать задачи, используя физические законы (закон сохранения энергии, закон всемирного тяготения, принцип суперпозиции сил, I, II и III законы Ньютона, закон сохранения импульса, закон Гука, закон Паскаля, закон Архимеда) и формулы, связывающие физические величины (путь, скорость, ускорение, масса тела, плотность вещества, сила, давление, импульс тела, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность, КПД простого механизма, сила трения скольжения, амплитуда, период и частота колебаний, длина волны и скорость её распространения): на основе анализа условия задачи выделять физические величины и формулы, необходимые для её решения, и проводить расчёты.

Выпускник получит возможность научиться:

• использовать знания о механических явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;

• приводить примеры практического использования физических знаний о механических явлениях и физических законах; использования возобновляемых источников энергии; экологических последствий исследования космического пространства;

• различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов (закон сохранения механической энергии, закон сохранения импульса, закон всемирного тяготения) и ограниченность использования частных законов (закон Гука, закон Архимеда и др.);

• приёмам поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;

• находить адекватную предложенной задаче физическую модель, разрешать проблему на основе имеющихся знаний по механике с использованием математического аппарата, оценивать реальность полученного значения физической величины.

Тепловые явления

Выпускник научится:

• распознавать тепловые явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: диффузия, изменение объёма тел при нагревании (охлаждении), большая сжимаемость газов, малая сжимаемость жидкостей и твёрдых тел; тепловое равновесие, испарение, конденсация, плавление, кристаллизация, кипение, влажность воздуха, различные способы теплопередачи;

• описывать изученные свойства тел и тепловые явления, используя физические величины: количество теплоты, внутренняя энергия, температура, удельная теплоёмкость вещества, удельная теплота плавления и парообразования, удельная теплота сгорания топлива, коэффициент полезного действия теплового двигателя; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами;

• анализировать свойства тел, тепловые явления и процессы, используя закон сохранения энергии; различать словесную формулировку закона и его математическое выражение;

• различать основные признаки моделей строения газов, жидкостей и твёрдых тел;

• решать задачи, используя закон сохранения энергии в тепловых процессах, формулы, связывающие физические величины (количество теплоты, внутренняя энергия, температура, удельная теплоёмкость вещества, удельная теплота плавления и парообразования, удельная теплота сгорания топлива, коэффициент полезного действия теплового двигателя): на основе анализа условия задачи выделять физические величины и формулы, необходимые для её решения, и проводить расчёты.

Выпускник получит возможность научиться:

• использовать знания о тепловых явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; приводить примеры экологических последствий работы двигателей внутреннего сгорания (ДВС), тепловых и гидроэлект-ростанций;

• приводить примеры практического использования физических знаний о тепловых явлениях;

• различать границы применимости физических законов, понимать всеобщий характер фундаментальных физических законов (закон сохранения энергии в тепловых процессах) и ограниченность использования частных законов;

• приёмам поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;

• находить адекватную предложенной задаче физическую модель, разрешать проблему на основе имеющихся знаний о тепловых явлениях с использованием математического аппарата и оценивать реальность полученного значения физической величины.

Электрические и магнитные явления

Выпускник научится:

• распознавать электромагнитные явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: электризация тел, взаимодействие зарядов, нагревание проводника с током, взаимодействие магнитов, электромагнитная индукция, действие магнитного поля на проводник с током, прямолинейное распространение света, отражение и преломление света, дисперсия света;

• описывать изученные свойства тел и электромагнитные явления, используя физические величины: электрический заряд, сила тока, электрическое напряжение, электрическое сопротивление, удельное сопротивление вещества, работа тока, мощность тока, фокусное расстояние и оптическая сила линзы; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения; указывать формулы, связывающие данную физическую величину с другими величинами;

• анализировать свойства тел, электромагнитные явления и процессы, используя физические законы: закон сохранения электрического заряда, закон Ома для участка цепи, закон Джоуля — Ленца, закон прямолинейного распространения света, закон отражения света, закон преломления света; при этом различать словесную формулировку закона и его математическое выражение;

• решать задачи, используя физические законы (закон Ома для участка цепи, закон Джоуля — Ленца, закон прямолинейного распространения света, закон отражения света, закон преломления света) и формулы, связывающие физические величины (сила тока, электрическое напряжение, электрическое сопротивление, удельное сопротивление вещества, работа тока, мощность тока, фокусное расстояние и оптическая сила линзы, формулы расчёта электрического сопротивления при последовательном и параллельном соединении проводников); на основе анализа условия задачи выделять физические величины и формулы, необходимые для её решения, и проводить расчёты.

Выпускник получит возможность научиться:

• использовать знания об электромагнитных явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;

• приводить примеры практического использования физических знаний о электромагнитных явлениях;

• различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов (закон сохранения электрического заряда) и ограниченность использования частных законов (закон Ома для участка цепи, закон Джоуля — Ленца и др.);

• приёмам построения физических моделей, поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;

• находить адекватную предложенной задаче физическую модель, разрешать проблему на основе имеющихся знаний об электромагнитных явлениях с использованием математического аппарата и оценивать реальность полученного значения физической величины.

Квантовые явления

Выпускник научится:

• распознавать квантовые явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: естественная и искусственная радиоактивность, возникновение линейчатого спектра излучения;

• описывать изученные квантовые явления, используя физические величины: скорость электромагнитных волн, длина волны и частота света, период полураспада; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения; указывать формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;

• анализировать квантовые явления, используя физические законы и постулаты: закон сохранения энергии, закон сохранения электрического заряда, закон сохранения массового числа, закономерности излучения и поглощения света атомом;

• различать основные признаки планетарной модели атома, нуклонной модели атомного ядра;

• приводить примеры проявления в природе и практического использования радиоактивности, ядерных и термоядерных реакций, линейчатых спектров.

Выпускник получит возможность научиться:

• использовать полученные знания в повседневной жизни при обращении с приборами (счётчик ионизирующих частиц, дозиметр), для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;

• соотносить энергию связи атомных ядер с дефектом массы;

• приводить примеры влияния радиоактивных излучений на живые организмы; понимать принцип действия дозиметра;

• понимать экологические проблемы, возникающие при использовании атомных электростанций, и пути решения этих проблем, перспективы использования управляемого термоядерного синтеза.

Элементы астрономии

Выпускник научится:

• различать основные признаки суточного вращения звёздного неба, движения Луны, Солнца и планет относительно звёзд;

• понимать различия между гелиоцентрической и геоцентрической системами мира.

Выпускник получит возможность научиться:

• указывать общие свойства и отличия планет земной группы и планет-гигантов; малых тел Солнечной системы и больших планет; пользоваться картой звёздного неба при наблюдениях звёздного неба;

• различать основные характеристики звёзд (размер, цвет, температура), соотносить цвет звезды с её температурой;

• различать гипотезы о происхождении Солнечной системы.

Содержание учебного предмета


7 класс

1. Введение (2 ч)

Что изучает физика. Физические явления. Наблюдения, опыты, измерения. Погрешности измерений. Физика и техника.

Лабораторная работа №1. «Определение цены деления измерительного прибора»

Демонстрации:

Примеры механических, тепловых, электрических, световых явлений

Физические приборы

2. Первоначальные сведения о строении веществ (5 ч)

Молекулы. Диффузия. Движение молекул. Броуновское движение. Притяжение и отталкивание молекул. Различные состояния вещества и их объяснение на основе молекулярно-кинетических представлений.

Лабораторная работа №2 «Определение размеров малых тел»

Демонстрации:

Сжимаемость газов

Диффузия в газах и жидкостях

Модель броуновского движения

Сцепление свинцовых цилиндров

3. Взаимодействие тел (21 ч)

Механическое движение. Равномерное движение. Скорость. Инерция. Взаимодействие тел. Масса тела. Измерение массы тела с помощью весов. Плотность вещества.

Явление тяготения. Сила тяжести. Сила, возникающая при деформации. Упругая деформация. Закон Гука. Вес тела. Связь между силой тяжести и массой.

Динамометр. Графическое изображение силы. Сложения сил, действующих по одной прямой.

Центр тяжести тела.

Трение. Сила трения. Трение скольжения, качения, покоя. Подшипники.

Лабораторная работа №3 «Измерение массы тела на рычажных весах»

Лабораторная работа №4 «Измерение объема тела»

Лабораторная работа№5«Определение плотности твердого тела»

Лабораторная работа №6 «Измерение силы при помощи динамометра»

Лабораторная работа №7 «Измерение силы трения скольжения»

Демонстрации:

Равномерное прямолинейное движение

Относительность движения

Явление инерции

Взаимодействие тел

Зависимость силы упругости от деформации пружины

Сила трения

4. Давление твердых тел, газов, жидкостей (23 ч)

Давление. Давление твердых тел. Давление газа. Объяснение давления на основе молекулярно-кинетических представлений. Закон Паскаля. Давление в жидкости и газе. Сообщающиеся сосуды. Шлюзы.

Атмосферное давление. Опыт Торричелли. Барометр-анероид. Изменение атмосферного давления с высотой. Манометр. Насос. Гидравлический пресс. Гидравлический тормоз.

Архимедова сила. Условие плавания тел. Водный транспорт. Воздухоплавание.

Лабораторная работа №8 «Измерение выталкивающей (архимедовой) силы»

Демонстрации:

Зависимость давления твердого тела от площади опоры и приложенной силы

Измерение атмосферного давления барометром-анероидом

Закон Паскаля.

Гидравлический пресс

5. Работа и мощность. Энергия (13 ч)

Работа силы, действующей по направлению движения тела. Мощность. Простые механизмы. Условия равновесия рычага. Момент силы. Равновесие тела с закрепленной осью вращения. Виды равновесия тел.

«Золотое правило» механики. Коэффициент полезного действия.

Потенциальная энергия поднятого тела, сжатой пружины. Кинетическая энергия движущегося тела. Превращение одного вида механической энергии в другой. Закон сохранения полной механической энергии. Энергия рек и ветра.

Лабораторная работа №9 «Выяснение условия равновесия рычага»

Лабораторная работа №10 «Определение КПД наклонной плоскости»

Демонстрации:

Простые механизмы

Превращение механической энергии из одной формы в другую

6. Итоговое повторение (4 ч)


8 класс


1.Повторение по материалу, изученному в 7 классе (3 ч)


2. Тепловые явления (23 ч)

Тепловое движение. Тепловое равновесие. Температура. Внутренняя энергия. Работа и теплопередача. Теплопроводность. Конвекция. Излучение. Количество теплоты. Удельная теплоемкость. Расчет количества теплоты при теплообмене. Закон сохранения и превращения энергии в механических и тепловых процессах. Плавление и отвердевание кристаллических тел. Удельная теплота плавления. Испарение и конденсация. Кипение. Влажность воздуха. Удельная теплота парообразования. Объяснение изменения агрегатного состояния вещества на основе молекулярно-кинетических представлений. Преобразование энергии в тепловых машинах. Двигатель внутреннего сгорания. Паровая турбина. КПД теплового двигателя. Экологические проблемы использования тепловых машин.


Лабораторная работа №1 « Сравнение количеств теплоты при смешивании воды разной температуры»

Лабораторная работа №2 « Измерение удельной теплоемкости твердого тела»


Лабораторная работа №3 « Измерение влажности воздуха»

Демонстрации:

Принцип действия термометра

Теплопроводность различных материалов

Конвекция в жидкостях и газах

Теплопередача путем излучения

Явление испарения

Постоянство температуры кипения жидкости при постоянном давлении

Понижение температуры кипения жидкости при понижении давления

Наблюдение конденсации паров воды на стакане со льдом

3. Электрические явления (25 ч)

Электризация тел. Два рода электрических зарядов. Взаимодействие заряженных тел. Проводники, диэлектрики и полупроводники. Электрическое поле. Закон сохранения электрического заряда. Делимость электрического заряда. Электрон. Строение атома. Электрический ток. Действие электрического поля на электрические заряды. Источники тока. Электрическая цепь. Сила тока. Электрическое напряжение. Электрическое сопротивление. Закон Ома для участка цепи. Последовательное и параллельное соединение проводников. Работа и мощность электрического тока. Закон Джоуля—Ленца. Конденсатор. Правила безопасности при работе с электроприборами.


Лабораторная работа №4 «Сборка электрической цепи и измерение силы тока в ее различных участках»


Лабораторная работа №5 «Измерение напряжения на различных участках электрической цепи»


Лабораторная работа №6 «Регулирование силы тока реостатом»


Лабораторная работа №7 «Измерение сопротивления проводника при помощи амперметра и вольтметра»


Лабораторная работа №8 «Измерение мощности и работы тока в электрической лампе»

Демонстрации:

Электризация тел

Два рода электрических зарядов

Устройство и действие электроскопа

Закон сохранения электрических зарядов

Проводники и изоляторы

Источники постоянного тока

Измерение силы тока амперметром

Измерение напряжения вольтметром

Реостат и магазин сопротивлений

Свойства полупроводников

4. Электромагнитные явления (5 ч)


Опыт Эрстеда. Магнитное поле. Магнитное поле прямого тока. Магнитное поле катушки с током. Постоянные магниты. Магнитное поле постоянных магнитов. Магнитное поле Земли. Взаимодействие магнитов. Действие магнитного поля на проводник с током. Электрический двигатель.


Лабораторная работа № 9 «Сборка электромагнита и испытание его действия»

Лабораторная работа № 10 «Изучение электрического двигателя постоянного тока (на модели)»

Демонстрации:

Опыт Эрстеда

Магнитное поле тока

Действие магнитного поля на проводник с током

Устройство электродвигателя

5. Световые явления (8 ч)

Источники света. Прямолинейное распространение света. Видимое движение светил. Отражение света. Закон отражения света. Плоское зеркало. Преломление света. Закон преломления света. Линзы. Фокусное расстояние линзы. Оптическая сила линзы. Изображения, даваемые линзой. Глаз как оптическая система. Оптические приборы.


Лабораторная работа № 11 «Получение изображения при помощи линзы»

Демонстрации:

Прямолинейное распространение света

Отражение света

Преломление света

Ход лучей в собирающей линзе

Ход лучей в рассеивающей линзе

Построение изображений с помощью линз

Принцип действия проекционного аппарата и фотоаппарата.

Дисперсия белого света

Получение белого света при сложении света разных цветов

6. Итоговое повторение (4 ч)


  1. класс


    1. Повторение по материалу, изученному в 8 классе (3 ч)


2. Законы взаимодействия и движения тел (23 ч)


Материальная точка. Система отсчета. Перемещение. Скорость прямолинейного равномерного движения. Прямолинейное равноускоренное движение: мгновенная скорость, ускорение, перемещение. Графики зависимости кинематических величин от времени при равномерном и равноускоренном движении. Относительность механического движения. Геоцентрическая и гелиоцентрическая системы мира. Инерциальная система отсчета. Законы Ньютона. Свободное падение. Невесомость. Закон всемирного тяготения. [Искусственные спутники Земли.] 1 Импульс. Закон сохранения импульса. Реактивное движение.


Лабораторная работа № 1 «Исследование равноускоренного движения без начальной скорости»

Лабораторная работа № 2 «Измерение ускорения свободного падения»

Демонстрации:

Относительность движения.

Прямолинейное и криволинейное движение.

Стробоскоб

Спидометр

Сложение перемещений

Падение тел в воздухе и разряженном газе (в трубке Ньютона)

Определение ускорения при свободном падении

Направление скорости при движении по окружности

Проявление инерции

Сравнение масс

Измерение сил

Второй закон Ньютона

Сложение сил, действующих на тело под углом к друг другу

Третий закон Ньютона

Закон сохранения импульса

Реактивное движение

Модель ракеты

3. Механические колебания и волны. Звук (10 ч)


Колебательное движение. Колебания груза на пружине. Свободные колебания. Колебательная система. Маятник. Амплитуда, период, частота колебаний. [Гармонические колебания]. Превращение энергии при колебательном движении. Затухающие колебания. Вынужденные колеба-ния. Резонанс. Распространение колебаний в упругих средах. Поперечные и продольные


волны. Длина волны. Связь длины волны со скоростью ее распространения и периодом (частотой). Звуковые волны. Скорость звука. Высота, тембр и громкость звука. Эхо. Звуковой резонанс. [Интерференция звука].


Лабораторная работа № 3 «Исследование зависимости периода и частоты свободных колебаний маятника от длины его нити»

Демонстрации:

Свободные колебания груза на нити и на пружине

Зависимость периода колебаний груза на пружине от жесткости пружины и массы груза

Зависимость периода колебаний груза на нити от ее длины

Вынужденные колебания

Резонанс маятников

Применение маятника в часах

Распространение поперечных и продольных волн

Колеблющиеся тела как источник звука

Зависимость громкости звука от амплитуды колебаний

Зависимость высоты тона от частоты колебаний


4. Электромагнитное поле (12 ч)


Однородное и неоднородное магнитное поле. Направление тока и направление линий его магнитного поля. Правило буравчика. Обнаружение магнитного поля. Правило левой руки. Индукция магнитного поля. Магнитный поток. Опыты Фарадея. Электромагнитная индукция. Направление индукционного тока. Правило Ленца. Явление самоиндукции. Переменный ток. Генератор переменного тока. Преобразования энергии в электрогенераторах. Трансформатор. Передача электрической энергии на расстояние. Электромагнитное поле. Электромагнитные волны. Скорость распространения электромагнитных волн. Влияние электромагнитных излучений на живые организмы. Колебательный контур. Получение электромагнитных колебаний. Принципы радиосвязи и телевидения. [Интерференция света.] Электромагнитная природа света. Преломление света. Показатель преломления. Дисперсия света. Цвета тел. [Спектрограф и спектроскоп.] Типы оптических спектров. [Спектральный анализ.] Поглощение и испускание света атомами. Происхождение линейчатых спектров.


Лабораторная работа № 4 «Изучение явления электромагнитной индукции»


Лабораторная работа № 5 « Наблюдение сплошного и линейчатых спектров испускания»

Демонстрации:

Обнаружение магнитного поля проводника с током

Расположение магнитных стрелок вокруг прямого проводника с током

Усиление магнитного поля катушки с током введением в нее железного сердечника

Применение электромагнитов

Движение прямого проводника и рамки с током в магнитном поле

Устройство и действие электрического двигателя постоянного тока

Модель генератора переменного тока

Взаимодействие постоянных магнитов



5. Строение атома и атомного ядра (12 ч)


Радиоактивность как свидетельство сложного строения атомов. Альфа-, бета- и гамма-излучения. Опыты Резерфорда. Ядерная модель атома. Радиоактивные превращения атомных ядер. Сохранение зарядового и массового чисел при ядерных реакциях. Экспериментальные методы исследования частиц. Протонно-нейтронная модель ядра. Физический смысл зарядового и массового чисел. Изотопы. Правила смещения для альфа-и бета-распада при ядерных реакциях. Энергия связи частиц в ядре. Деление ядер урана. Цепная реакция. Ядерная энергетика. Экологические проблемы работы атомных электростанций. Дозиметрия. Период полураспада. Закон радиоактивного распада. Влияние радиоактивных излучений на живые организмы. Термоядерная реакция. Источники энергии Солнца и звезд.


Измерение естественного радиационного фона дозиметром.

Лабораторная работа № 6 «Изучение деления ядра атома урана по фотографии треков»


Лабораторная работа № 7 «Оценка периода полураспада находящихся в воздухе продуктов распада газа радона»


Лабораторная работа № 8 «Изучение треков заряженных частиц по готовым фотографиям»

6. Строение и эволюция Вселенной (4 ч)

Состав, строение и происхождение Солнечной системы. Планеты и малые тела Солнечной системы. Строение, излучение и эволюция Солнца и звезд. Строение и эволюция Вселенной.



7. Итоговое повторение (4 ч)


Тематическое планирование с определением

основных видов учебной деятельности обучающихся

7 класс


№ п/п

Содержание

Основные виды деятельности


1-2


Введение (2 ч)

Объяснять, описывать физические явления,

отличать физические явления от химических;

проводить наблюдения физических явлений,

анализировать и классифицировать их, различать

методы изучения физики; измерять расстояния,

промежутки времени, температуру; обрабатывать

результаты измерений; определять цену деления

шкалы измерительного цилиндра; определять объем жидкости с помощью измерительного цилиндра; переводить значения физических величин в СИ, определять погрешность измерения, записывать результат измерения с учетом погрешности;


3-7


Первоначальные сведения

о строении вещества (5 ч)

Объяснять опыты, подтверждающие молекулярное строение вещества, броуновское движение; схематически изображать молекулы воды и кислорода; определять размер малых тел;

сравнивать размеры молекул разных веществ: воды, воздуха; объяснять: основные свойства молекул, физические явления на основе знаний о строении вещества; измерять размеры малых тел методом рядов; объяснять явление диффузии и зависимость скорости ее протекания от температуры тела; приводить примеры диффузии в окружающем мире; проводить и объяснять опыты по обнаружению сил взаимного притяжения и отталкивания молекул; наблюдать и исследовать явление смачивания и несмачивания тел, объяснять данные явления на основе знаний о взаимодействии молекул; доказывать наличие различия в молекулярном строении твердых тел, жидкостей и газов;


8-28


Взаимодействия тел (21 ч)

Определять траекторию движения тела; переводить в основную единицу пути в км, мм, см, дм; различать равномерное и неравномерное движение; доказывать относительность движения тела; определять тело, относительно которого происходит движение; рассчитывать скорость тела при равномерном и среднюю скорость при неравномерном движении; выражать скорость в км/ч, м/с; анализировать таблицу скоростей движения некоторых тел; определять среднюю скорость движения заводного автомобиля; графически изображать скорость, описывать равномерное движение; определять: путь, пройденный за данный промежуток времени, скорость тела по графику зависимости пути равномерного движения от времени; объяснять явление инерции; описывать явление взаимодействия тел; устанавливать зависимость изменения скорости движения тела от его массы; переводить основную единицу массы в т, г, мг; определять плотность вещества; измерять объем тела с помощью измерительного цилиндра; измерять плотность твердого тела с помощью весов и измерительного цилиндра; анализировать результаты измерений и вычислений, делать выводы; определять массу тела по его объему и плотности; записывать формулы для нахождения массы тела, его объема и плотности вещества; графически, в масштабе изображать силу и точку ее приложения; определять зависимость изменения скорости тела от приложенной силы; анализировать опыты по столкновению шаров, сжатию упругого тела и делать выводы; приводить примеры проявления тяготения в окружающем мире; находить точку приложения и указывать направление силы тяжести; выделять особенности планет земной группы и планет-гигантов (различие и общие свойства); отличать силу упругости от силы тяжести; графически изображать силу упругости, показывать точку приложения и направление ее действия; объяснять причины возникновения силы упругости; приводить примеры видов деформации, встречающиеся в быту; графически изображать вес тела и точку его приложения; рассчитывать силу тяжести и вес тела; находить связь между силой тяжести и массой тела; определять силу тяжести по известной массе тела, массу тела по заданной силе тяжести; экспериментально находить равнодействующую двух сил; измерять силу трения скольжения; называть способы увеличения и уменьшения силы трения;


29-51


Давление твердых тел,

жидкостей и газов (23 ч)

Приводить примеры, показывающие зависимость

действующей силы от площади опоры; вычислять

давление по известным массе и объему; переводить основные единицы давления в кПа, гПа; отличать газы по их свойствам от твердых тел и жидкостей; объяснять давление газа на стенки сосуда на основе теории строения вещества; объяснять причину передачи давления жидкостью или газом во все стороны одинаково; анализировать опыт по передаче давления жидкостью и объяснять его результаты; приводить примеры сообщающихся сосудов в быту; вычислять массу воздуха;

сравнивать атмосферное давление на различных

высотах от поверхности Земли; объяснять влияние

атмосферного давления на живые организмы;

вычислять атмосферное давление; измерять

атмосферное давление с помощью барометра-

анероида; измерять давление с помощью манометра; приводить примеры из практики применения поршневого насоса и гидравлического пресса; доказывать, основываясь на законе Паскаля, существование выталкивающей силы, действующей на тело; выводить формулу для определения выталкивающей силы; рассчитывать силу

Архимеда; указывать причины, от которых зависит сила Архимеда; объяснять причины плавания тел; приводить примеры плавания различных тел и живых организмов; рассчитывать силу Архимеда; Объяснять условия плавания судов; приводить примеры из жизни плавания и воздухоплавания; объяснять изменение осадки судна;


52-64

Работа и мощность. Энергия

(13 ч)

Вычислять механическую работу; определять

условия, необходимые для совершения механической работы; вычислять мощность по известной работе; применять условия равновесия рычага в практических целях: поднятии и перемещении груза; определять плечо силы; проверить опытным путем, при каком соотношении сил и их плеч рычаг находится в равновесии; проверять на опыте правило моментов; опытным путем установить, что

полезная работа, выполненная с помощью простого механизма, меньше полной; анализировать КПД различных механизмов; приводить примеры тел, обладающих потенциальной, кинетической энергией, превращения энергии из одного вида в другой, тел обладающих одновременно и кинетической и потенциальной энергией.

65-68

Итоговое повторение (4ч)

Представлять результаты своей учебной деятельности


8 класс

№ п/п

Содержание

Основные виды деятельности

1-3

Повторение по материалу, изученному в 7 классе (3 ч)

Представлять результаты своей учебной деятельности


4-26


Тепловые явления

(23 ч)


Давать определение внутренней энергии тела как

суммы кинетической энергии движения его частиц

и потенциальной энергии их взаимодействия.

Объяснять тепловые явления, характеризовать

тепловое явление, анализировать зависимость

температуры тела от скорости движения его

молекул; наблюдать и исследовать превращение

энергии тела в механических процессах; объяснять

изменение внутренней энергии тела, когда над ним

совершают работу или тело совершает работу;

перечислять способы изменения внутренней

энергии; приводить примеры изменения внутренней

энергии тела путем совершения работы и

теплопередачи; объяснять тепловые явления на

основе молекулярно-кинетической теории.

приводить примеры теплопередачи путем теплопроводности; приводить примеры теплопередачи путем конвекции и излучения; анализировать, как на

практике учитываются различные виды теплопередачи; сравнивать виды теплопередачи; рассчитывать количество теплоты, необходимое для нагревания тела или выделяемое им при охлаждении; объяснять физический смысл удельной теплоты сгорания топлива и рассчитывать ее; формулировать закон сохранения механической энергии и приводить примеры из жизни, подтверждающие этот закон. Отличать процессы плавления тела от кристаллизации и приводить примеры этих процессов; приводить примеры агрегатных состояний вещества; отличать агрегатные состояния вещества и объяснять особенности молекулярного строения газов, жидкостей и твердых тел; рассчитывать количество теплоты, выделившееся

при кристаллизации; объяснять процессы плавления

и отвердевания тела на основе молекулярно-кинетических представлений; определять по формуле

количество теплоты, выделяющееся при плавлении

и кристаллизации тела; объяснять понижение температуры жидкости при испарении; рассчитывать количество теплоты, необходимое для превращения в пар жидкости любой массы; рассчитывать количество теплоты, полученное (отданное) телом, удельную теплоту парообразования. Приводить примеры влияния влажности воздуха в быту и деятельности человека; определять влажность воздуха; рассказывать о применении паровой турбины в технике. Объяснять устройство и принцип работы паровой турбины. Сравнивать КПД различных машин и механизмов.


26-50


Электрические явления

(25 ч)

Объяснять взаимодействие заряженных тел и существование двух родов заряда. Объяснять устройство сухого гальванического элемента. Приводить примеры источников электрического тока, объяснять их назначение. Обнаруживать наэлектризованные тела, электрическое поле. Пользоваться электроскопом. Определять изменение силы, действующей на заряженное тело при удалении и приближении его к заряженному телу. Объяснять опыт Иоффе - Милликена. Доказывать существование частиц, имеющих наименьший электрический заряд. Объяснять образование положительных и отрицательных ионов. Объяснять электризацию тел при соприкосновении. Устанавливать зависимость заряда при переходе его с наэлектризованного тела на не наэлектризованное при соприкосновении. Формулировать закон сохранения электрического заряда. На основе знаний строения атома объяснять существование проводников, полупроводников и диэлектриков. Приводить примеры применения проводников, полупроводников и диэлектриков в технике, практического применения полупроводникового диода. Наблюдать и исследовать работу полупроводникового диода. Объяснять устройство сухого гальванического элемента. Приводить примеры источников электрического тока, объяснять их назначение. Собирать электрическую цепь. Объяснять особенности электрического тока в металлах, назначение источника тока в электрической цепи. Различать замкнутую и разомкнутую электрические цепи. Приводить примеры химического и теплового действия электрического тока и их использования в технике. Показывать магнитное действие тока. Определять направление силы тока. Рассчитывать по формуле силу тока, выражать в различных единицах силу тока. Включать амперметр в цепь. Определять силу тока на различных участках цепи. Чертить схемы электрической цепи. Выражать напряжение в кВ, мВ. Рассчитывать напряжение по формуле. Определять цену деления вольтметра, подключать его в цепь, измерять напряжение. Строить график зависимости силы тока от напряжения. Объяснять причину возникновения сопротивления. Собирать электрическую цепь, пользоваться амперметром и вольтметром. Устанавливать зависимость силы тока в проводнике от сопротивления этого проводника. Записывать закон Ома в виде формулы. Устанавливать соотношение между сопротивлением проводника, его длиной и площадью поперечного сечения. Определять удельное сопротивление проводника. Чертить схемы электрической цепи с включенным в цепь реостатом. Рассчитывать электрическое сопротивление. Пользоваться реостатом для регулировки силы тока в цепи. Рассчитывать работу и мощность электрического тока. Выражать единицу мощности через единицы напряжения и силы тока. Выражать работу тока в Вт ч.; кВт ч. Определять мощность и работу тока в лампе, используя амперметр, вольтметр, часы. Объяснять нагревание проводников с током с позиции молекулярного строения вещества. Рассчитывать количество теплоты, выделяемое

проводником с током по закону Джоуля-Ленца. Объяснять для чего служат конденсаторы в технике. Объяснять способы увеличения и уменьшения емкости конденсатора. Рассчитывать электроемкость конденсатора, работу, которую совершает электрическое поле конденсатора, энергию конденсатора. Различать по принципу действия

лампы, используемые для освещения, предохранители в современных приборах.


51-56


Электромагнитные

явления

(5 ч)


Выявлять связь между электрическим током и магнитным полем. Показывать связь направления

магнитных линий с направлением тока с помощью

магнитных стрелок. Приводить примеры магнитных

явлений. Перечислять способы усиления магнитного действия катушки с током. Приводить примеры

использования электромагнитов в технике и быту.

Объяснять возникновение магнитных бурь, намагничивание железа. Получать картину магнитного поля дугообразного магнита. Описывать опыты по намагничиванию веществ. Объяснять принцип действия электродвигателя и области его применения. Перечислять преимущества электродвигателей в сравнении с тепловыми. Ознакомиться с историей изобретения электродвигателя. Собирать электрический двигатель постоянного тока (на модели). Определять основные детали электрического двигателя постоянного тока (подвижные и неподвижные его части): якорь,

индуктор, щетки, вогнутые пластины.


57-64


Световые явления

(8 ч)

Формулировать закон прямолинейного распространения света. Объяснять образование тени и полутени. Проводить исследовательский эксперимент по получению тени и полутени. Находить Полярную звезду созвездия Большой Медведицы. Используя подвижную карту звездного неба определять положение планет. Формулировать закон отражения света. Проводить

исследовательский эксперимент по изучению зависимости угла отражения от угла падения. Применять законы отражения при построении

изображения в плоском зеркале. Строить изображение точки в плоском зеркале. Формулировать закон преломления света. Различать линзы по внешнему виду. Определять, какая из двух линз с разными фокусными расстояниями дает большее увеличение. Проводить исследовательское задание по получению изображения с помощью линзы. Строить изображения, даваемые линзой (рассеивающей, собирающей) для случаев: F

2F; 2F

65-68

Итоговое

повторение (4 ч)

Представлять результаты своей учебной деятельности


9 класс

№ п/п

Содержание

Основные виды деятельности

1-3

Повторение по материалу, изученному в 8 классе (3 ч)

Представлять результаты своей учебной деятельности


4-26


Законы взаимодействия и движения тел

(23 ч)

Наблюдать и описывать прямолинейное и равномерное движение тележки с капельницей; определять по ленте со следами капель вид движения тележки, пройденный ею путь и промежуток времени от начала движения до

остановки; обосновывать возможность замены тележки её моделью (материальной точкой) для описания движения. Приводить примеры, в которых координату движущегося тела в любой момент времени можно определить, зная его начальную координату и совершенное им за данный промежуток времени перемещение, и нельзя, если вместо перемещения задан пройденный путь. Определять модули и проекции векторов на координатную ось; записывать уравнение для определения координаты движущегося тела в векторной и скалярной форме, использовать его для решения задач. Записывать формулы: для нахождения проекции и модуля вектора перемещения тела, для вычисления координаты движущегося тела в любой заданный момент времени; доказывать равенство модуля вектора перемещения пройденному пути и площади под графиком скорости; строить графики зависимости vx = vx(t) Объяснять физический смысл понятий: мгновенная скорость, ускорение; приводить

примеры равноускоренного движения; записывать

формулу для определения ускорения в векторном виде и в виде проекций на выбранную ось; применять формулы для расчета скорости тела и его ускорения в решении задач, выражать любую из входящих в формулу величин через остальные. Записывать формулы для расчета начальной и конечной скорости тела; читать и строить графики зависимости скорости тела от времени и ускорения тела от времени; решать расчетные и качественные задачи с применением формул. Решать расчетные задачи с применением формулы sx = v0xt + ax*t 2 /2; приводить формулу s = v0x + vx •t /2 к виду

sx = vх 2 – v0х 2 /2ах ; доказывать, что для прямолинейного равноускоренного движения уравнение х = х0 + sx может быть преобразовано в уравнение x = x0+ v0xt + a x t2 /2. Наблюдать движение тележки с капельницей ; делать выводы о характере движения тележки; вычислять модуль вектора перемещения, совершенного прямолинейно и равноускоренно движущимся телом за n-ю секунду от начала движения, по модулю перемещения, совершенного им за k-ю секунду. Пользуясь метрономом, определять промежуток времени от начала равноускоренного движения шарика до его остановки; определять ускорение движения шарика и его мгновенную скорость перед ударом о цилиндр; представлять результаты измерений и вычислений в виде таблиц и графиков; по графику определять скорость в заданный момент времени; Наблюдать и описывать движение маятника в двух системах отсчета, одна из которых связана с землей, а другая с лентой, движущейся равномерно относительно земли; сравнивать траектории, пути, перемещения, скорости маятника в указанных системах отсчета; приводить примеры, поясняющие относительность движения. Наблюдать проявление инерции; приводить примеры проявления инерции; решать качественные задачи на применение первого закона Ньютона. Записывать второй закон Ньютона в виде формулы; решать расчетные и качественные задачи на применение этого закона. Наблюдать, описывать и объяснять опыты, иллюстрирующие справедливость третьего закона Ньютона; записывать третий закон Ньютона в виде формулы; решать расчетные и качественные задачи на применение этого закона. Наблюдать падение одних и тех же тел в воздухе и в разреженном пространстве; делать вывод о движении тел с одинаковым ускорением при действии на них только силы тяжести. Наблюдать опыты, свидетельствующие о состоянии невесомости тел; сделать вывод об условиях, при которых тела находятся в состоянии невесомости; измерять ускорение свободного падения; Записывать закон всемирного тяготения в виде математического уравнения. Из закона всемирного тяготения выводить формулу для расчета ускорения свободного падения тела. Приводить примеры прямолинейного и криволинейного движения тел; называть условия, при которых тела движутся прямолинейно или криволинейно; вычислять модуль центростремительного ускорения по формуле v2ц . с/R Решать расчетные и качественные задачи; слушать отчет о результатах выполнения задания-проекта «Экспериментальное подтверждение справедливости условия криволинейного движения тел»; Давать определение импульса тела, знать его единицу; объяснять, какая система тел называется замкнутой, приводить примеры замкнутой системы; записывать закон сохранения импульса. Наблюдать и объяснять полет модели ракеты.


27-36


Механические колебания и волны. Звук

(10 ч)

Определять колебательное движение по его признакам; приводить примеры колебаний; описывать динамику свободных колебаний пружинного и математического маятников; измерять жесткость пружины или резинового шнура. Называть величины, характеризующие колебательное движение; записывать формулу взаимосвязи периода и частоты колебаний; проводить экспериментальное исследование зависимости периода колебаний пружинного маятника от m и k. Проводить исследования зависимости периода (частоты) колебаний маятника от длины его нити; представлять результаты измерений и вычислений в виде таблиц. Объяснять причину затухания свободных колебаний; называть условие существования незатухающих колебаний. Объяснять, в чем заключается явление резонанса; приводить примеры полезных и вредных проявлений резонанса и пути устранения последних. Различать поперечные и продольные волны;

описывать механизм образования волн; называть характеризующие волны физические величины. Называть величины, характеризующие упругие волны; записывать формулы взаимосвязи между ними. Называть диапазон частот звуковых волн; приводить примеры источников звука; приводить обоснования того, что звук является продольной волной;


37-48


Электромагнитное поле

(12 ч)

Делать выводы о замкнутости магнитных линий и

об ослаблении поля с удалением от проводников с

током. Формулировать правило правой руки для соленоида, правило буравчика; определять направление электрического тока в проводниках и направление линий магнитного поля. Применять правило левой руки; определять направление силы, действующей на электрический заряд, движущийся в магнитном поле; определять знак заряда и направление движения частицы. Записывать формулу взаимосвязи модуля вектора магнитной индукции B, магнитного поля с модулем силы F, действующей на проводник длиной l, расположенный перпендикулярно линиям магнитной индукции и силой тока I в проводнике; описывать зависимость магнитного потока от индукции магнитного поля, пронизывающего площадь контура и от его ориентации по отношению к линиям магнитной

индукции. Наблюдать и описывать опыты, подтверждающие появление электрического поля при изменении магнитного поля, делать выводы. Проводить исследовательский эксперимент по изучению явления электромагнитной индукции; анализировать результаты эксперимента и делать выводы; Наблюдать взаимодействие алюминиевых колец с магнитом; объяснять физическую суть правила Ленца и формулировать его; применять правило Ленца и правило правой руки для определения направления индукционного тока. Наблюдать и объяснять явление самоиндукции. Рассказывать об устройстве и принципе действия генератора переменного тока; называть способы уменьшения потерь электроэнергии передаче ее на большие расстояния; рассказывать о назначении, устройстве и принципе действия трансформатора и его применении. Наблюдать опыт по излучению и

приему электромагнитных волн; описывать различия между вихревым электрическим и электростатическим полями. Наблюдать свободные электромагнитные колебания в колебательном контуре; Рассказывать о принципах радиосвязи и телевидения; Называть различные диапазоны электромагнитных волн. Наблюдать разложение белого света в спектр при его прохождении сквозь призму и получение белого света путем сложения спектральных цветов с помощью линзы; объяснять суть и давать определение явления дисперсии.

Наблюдать сплошной и линейчатые спектры испускания; называть условия образования сплошных и линейчатых спектров испускания. Объяснять излучение и поглощение света атомами и происхождение линейчатых спектров на основе постулатов Бора.


49-60


Строение атома и атомного ядра

(12 ч)

Описывать опыты Резерфорда: по обнаружению

сложного состава радиоактивного излучения и по исследованию с помощью рассеяния α-частиц строения атома. Объяснять суть законов сохранения массового числа и заряда при радиоактивных превращениях; применять эти законы при записи уравнений ядерных реакций. Измерять мощность дозы радиационного фона дозиметром; сравнивать полученный результат с наибольшим допустимым для человека значением; Применять законы сохранения массового числа и заряда для записи уравнений ядерных реакций. Объяснять физический смысл понятий: массовое и зарядовое числа.

Объяснять физический смысл понятий: энергия связи, дефект масс. Описывать процесс деления ядра атома урана; объяснять физический смысл понятий: цепная реакция, критическая масса; называть условия протекания управляемой цепной реакции. Рассказывать о назначении ядерного реактора на медленных нейтронах, его устройстве и принципе действия; называть преимущества и недостатки АЭС перед другими видами электростанций. Называть физические величины: поглощенная доза излучения, коэффициент

качества, эквивалентная доза, период полураспада;

слушать доклад «Негативное воздействие радиации

на живые организмы и способы защиты от нее». Называть условия протекания термоядерной реакции; приводить примеры термоядерных реакций; применять знания к решению задач. Строить график зависимости мощности дозы излучения продуктов распада радона от времени; оценивать по графику период полураспада

продуктов распада радона.


61-64

Строение и эволюция

Вселенной

(4 ч)

Наблюдать слайды или фотографии небесных объектов; называть группы объектов, входящих в солнечную систему приводить примеры изменения вида звездного неба в течение суток. Сравнивать планеты Земной группы; планеты-гиганты; анализировать фотографии или слайды планет. Описывать фотографии малых тел Солнечной системы. Объяснять физические процессы,

происходящие в недрах Солнца и звезд; называть причины образования пятен на Солнце; анализировать фотографии солнечной короны и образований в ней. Описывать три модели нестационарной Вселенной, предложенные Фридманом; объяснять в чем проявляется

нестационарность Вселенной; записывать закон

Хаббла.

65-68

Итоговое

повторение (4 ч)

Представлять результаты своей учебной деятельности



Скачать

Рекомендуемые курсы ПК и ППК для Вас