СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

РАБОЧАЯ ПРОГРАММА элективного курса «Задачи с параметром» среднее общее образование 10 класс

Категория: Математика

Нажмите, чтобы узнать подробности

Элективный курс «Задачи с модулями и параметрами» предназначен для подготовки учащихся 11 классов общеобразовательной школы к ЕГЭ. Данный элективный курс направлен на расширение знаний учащихся, повышение уровня математической подготовки через решение большого класса задач.

Просмотр содержимого документа
«РАБОЧАЯ ПРОГРАММА элективного курса «Задачи с параметром» среднее общее образование 10 класс»

Муниципальное общеобразовательное учреждение «Гимназия №1»



Принята

на заседании педагогического совета

протокол №1

от « 30 » августа 2018г

Утверждаю

приказ №1-320

от «31» августа 2018 г

Директор МОУ «Гимназия №1»

___________________Т.Г.Андреева






РАБОЧАЯ ПРОГРАММА

элективного курса

«Задачи с параметром»

среднее общее образование

10 класс

(углубленный уровень, технологический профиль)


на 2018-2019 учебный год




Составители:

Бородкина Татьяна Ивановна

Гатилова Любовь Николаевна







г. Железногорск

2018

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА



Основная функция курса по выбору направлена на повышение интереса к математике. Общеизвестно, что на вступительных экзаменах в ВУЗы довольно часто предлагаются задачи с параметрами, которые содержатся также в заданиях ГИА и ЕГЭ по математике. Нередко учащиеся не могут справиться с простейшими задачами, содержащими параметры и модули, что свидетельствует об отсутствии у части их навыков решения такого типа задач. Известно, что в программах по математике для неспециализированных школ этим задачам отводится совсем незначительное место.

Элективный курс «Задачи с модулями и параметрами» предназначен для подготовки учащихся 11 классов общеобразовательной школы к ЕГЭ. Данный элективный курс направлен на расширение знаний учащихся, повышение уровня математической подготовки через решение большого класса задач. Он расширяет и углубляет отдельные темы базовых общеобразовательных программ по математике, не нарушая ее целостности, а также предполагает изучение некоторых тем, выходящих за их рамки. Навыки в решении уравнений, неравенств, содержащих модуль и параметры, совершенно необходимы любому ученику, желающему хорошо подготовиться к сдаче экзаменам и поступлению в дальнейшем в высшие учебные заведения. Программа элективного курса применима для различных групп школьников, независимо от выбора их будущей профессии.

Курс рассчитан на 35 часов.

Наряду с основной задачей обучения математики - обеспечением прочного и сознательного овладения учащимися системой математических знаний и умений, данный курс предусматривает формирование устойчивого интереса к предмету, выявление и развитие математических способностей, ориентацию на профессии, существенным образом связанные с математикой.

Для жизни в современном обществе важным является формирование математического стиля мышления, проявляющего в определённых умственных навыках. В процессе решения задач с параметрами и модулями в арсенал приёмов и методов человеческого мышления естественным образом включаются индукция и дедукция, обобщение и конкретизация, анализ, классификация и систематизация, аналогия.

Именно задачи с параметрами обладают диагностической и прогностической ценностью, которые позволяют проверить знания основных разделов школьного курса математики, уровень логического мышления, первоначальные навыки исследовательской деятельности.

Задачи, предлагаемые в данном курсе, интересны и часто не просты в решении, что позволяет повысить учебную мотивацию учащихся и проверить свои способности к математике. Вместе с тем, содержание курса позволяет ученику любого уровня активно включаться в учебно-познавательный процесс и максимально проявить себя.

При решении таких задач школьники учатся мыслить логически, творчески. Это хороший материал для учебно-исследовательской работы, что является пропедевтикой научно-исследовательской деятельности.

Цели элективного курса:


  • пробуждение и развитие устойчивого интереса к математике, повышение математической культуры учащихся;

  • знакомство учащихся с методами решения различных по формулировке нестандартных задач;

  • привитие навыков употребления функционально-графического метода при решении задач;

  • расширение и углубление знаний по математике по программному материалу;

  • подготовка учащихся к продолжению образования в вузе.

Элективный курс рассчитан на учащихся, выбравших, физико-математический профиль. Курс позволяет учащимся глубже познакомиться с нестандартными приемами решения сложных задач, успешно развивает логическое мышление, умение найти среди множества способов решения тот, который комфортен для ученика и рационален. Этот курс требует от учащихся большой самостоятельной работы, способствует подготовке учащихся к продолжению образования, повышения уровня математической культуры.



Данный элективный курс знакомит учащихся с функционально-графическими методами решения алгебраических задач с параметрами и модулем. К сожалению, в школьной программе этим заданиям мало уделяется времени и практикум призван восполнить данный пробел. Одновременно, элективный курс призван, не только дополнять и углублять, знания учащихся, но и развивать их интерес к предмету, любознательность, логическое мышление.

Решение уравнений, неравенств и систем с параметрами и модулем открывает перед учащимися значительное число эвристических приемов общего характера, ценных для математического развития личности, применяемых в исследованиях и на любом другом математическом материале.

Элективный курс позволяет значительно сократить разрыв между требованиями, которые предъявляет своему абитуриенту ВУЗ и требованиями, которые предъявляет к своему выпускнику школа.

Поэтому, особая установка элективного курса - подготовка учащихся к конкурсным экзаменам в ВУЗы соответствующего профиля, и поэтому, преподавание должно обеспечить систематизацию знаний и умений, учащихся на уровне, предусмотренном программой вступительных экзаменов, так как учащиеся, владеющие методами решения задач с параметрами, успешно справляются и с другими задачами.

Преподавание элективного курса строится как углубленное изучение вопросов, предусмотренных программой основного курса. Углубление реализуется на базе обучения методам и приемам решения математических задач, требующих применения высокой логической и операционной культуры, развивающих научно-теоретическое и алгоритмическое мышление. Тематика задач не выходит за рамки основного курса, но уровень их трудности - повышенный. В процессе работы возможно перераспределение часов в зависимости от уровня подготовки старшеклассников.

Планируемые результаты обучения

В результате изучения курса учащиеся должны уметь:

  • решать линейные и квадратные уравнения с параметром;

  • строить графики элементарных функций, и их комбинации, усложненные модулями;

  • решать иррациональные, логарифмические, тригонометрические, показательные уравнения с параметром как аналитически, так и графически;

  • применять аппарат алгебры и математического анализа для решения прикладных задач;

  • иметь четкое представление о возможностях функционально-графического подхода к решению различных задач.


ФОРМЫ КОНТРОЛЯ: домашние контрольные работы, рефераты и исследовательские работы.


СОДЕРЖАНИЕ ЭЛЕКТИВНОГО КУРСА

11 класс (34 часа)

1. Понятие модуля. Решение уравнений по определению модуля (2 часа). Что такое модуль числа? Модули и расстояния. Освобождение от модулей в уравнениях. Методы решения уравнений содержащих несколько модулей. Параллельное раскрытие модулей. Метод интервалов в задачах с модулями. Модули и квадраты.

2. Построение графиков, содержащих знак модуля (2 часа). Графики элементарных функций, содержащие знак модуля, как у аргумента, так и у функции; двойные модули; графики уравнений и соответствий, содержащие знак модуля. Знакомство и работа с компьютерными программами для построения графиков.

3. Решение уравнений с переходом к системе или совокупности уравнений (3 часа). Рациональные уравнения, однородные уравнения, симметрические уравнения, возвратные уравнения. Иррациональные уравнения: простейшие, уравнения с несколькими радикалами, полные квадраты под знаком радикала, домножение на сопряженное, замена переменной, посторонние корни, применение свойств функций. Показательные и логарифмические уравнения, тригонометрические уравнения, сводящиеся к квадратным.

4. Рациональные неравенства с модулем. Обобщенный метод интервалов (2 часа). Решение неравенств методом интервалов. Неравенства с одним модулем. Освобождение от модуля в неравенствах. Способы решения рациональных неравенств: разложение на множители, выделение полного квадрата, приведение к общему знаменателю и алгебраическое сложение дробей и т.д.

5. Простейшие задачи с параметрами (1 час). Понятие параметра. Две основных формы постановки задачи с параметром. Графическая интерпретация задачи с параметром. Методы решения простейших задач с параметрами.

6. Задачи с параметром, сводящиеся к использованию квадратного трехчлена (2 часа). Условия существования корней квадратного трехчлена. Знаки корней. Расположение корней квадратного трехчлена относительно точки, отрезка. Графическая интерпретация.

7. Использование графических иллюстраций в задачах с параметрами (2 часа). Решение задач с помощью построения графиков левой и правой части уравнения или неравенства и «считывания» нужной информации с рисунка. Область определения. Множество значений. Четность. Монотонность. Периодичность. Симметрия графика относительно начала координат или оси ординат в зависимости от четности функции.

8. Приемы составления задач с параметрами, используя графики различных соответствий и уравнений. (1 час). Демонстрация приёма составления задач с параметром методом «от картинки к задаче».

9. Использование ограниченности функций, входящих в левую и правую части уравнений и неравенств (2 часа). Применение метода оценки левой и правой частей, входящих в уравнение или неравенство. «Полезные неравенства»: сумма двух взаимно обратных чисел, неравенство для суммы синуса и косинуса одного аргумента, неравенство между средним арифметическим и средним геометрическим положительных чисел.

10. Метод приведения к уравнению относительно неизвестной х с параметром у (2 часа). Основные приемы решения уравнений: тождественные преобразования, замена переменной. Равносильность уравнений. Исключение «посторонних» корней. Приемы решения рациональных, иррациональных, показательных и логарифмических уравнений. 11. Графический способ решения уравнений и неравенств (2 часа). Работа по построению графиков с помощью компьютерных программ Advanced Grapher, школьный графопостроитель – 1С, Математика + от AV. 12. Сочетание графического и алгебраического методов решения уравнений (3 часа). Основные приемы решения систем уравнений и неравенств: подстановка, алгебраическое сложение, введение новых переменных. Системы неравенств с одной и двумя переменными. Сравнение графического и алгебраического способов решения уравнений и неравенств. Уравнения, неравенства и системы с параметрами, их решение и исследование. 13. Комбинированные задачи с модулем и параметрами. Обобщенный метод областей (5часов). Перенос метода интервалов с прямой на плоскость. Обобщенный метод областей. Нахождение площади фигур, ограниченных неравенством. Применение метода областей к решению уравнений и неравенств с параметрами и модулем, и их комбинации.

14. Нетрадиционные задачи. Задачи группы "С" из ЕГЭ (6 часов). Использование экстремальных свойств рассматриваемых функций. Нестандартные по формулировке задачи, связанные с уравнениями или неравенствами. Задачи с параметром. От общего к частному и обратно. Задачи с: логическим содержанием. Практикум по решению задач, относящихся к группе «С», входящих в контрольно измерительные материалы ЕГЭ прошлых лет. Разбор методов и способов решения заданий.

При планировании спецкурса нельзя недооценивать возможности персональных компьютеров как средство организации самостоятельной работы школьников при повторении материала в старших классах, когда надо вспомнить теорию, обратившись к компьютеру как к справочнику. Предоставляемые компьютером новые методические возможности представляют качественно иной уровень и характер информационных задач (наглядность, динамичность, зримая акцентировка, модульность, визуализация объектов) и настолько расширяют методические горизонты и роль графических представлений, при изучении многих понятий и процессов в математике, что не применять их нельзя.



Календарно-тематическое планирование ( 1 группа)

п/п

Название темы

Количество часов

Дата

план

факт

1

Понятие модуля. Решение уравнений по определению модуля.

2

4.09

11.09


2

Построение графиков, содержащих знак модуля

2

18.09

25.09


3

Решение уравнений с переходом к системе или совокупности уравнений.

3

2.10

9.10

16.10


4

Рациональные неравенства с модулем. Обобщенный метод интервалов.

2

23.10

6.11


5

Простейшие задачи с параметрами.

1

13.11


6

Задачи с параметром, сводящиеся к использованию квадратного трехчлена.

2

20.11

27.11


7

Использование графических иллюстраций в задачах с параметрами.

2

4.12

11.12


8

Приемы составления задач с параметрами, используя графики различных соответствий и уравнений.

1

18.12


9

Использование ограниченности функций, входящих в левую и правую части уравнений и неравенств.

2

25.12

15.01


10

Метод приведения к уравнению относительно неизвестной х с параметром у.

2

22.01

29.01


11

Графический способ решения уравнений и неравенств.

2

5.02

12.02


12

Сочетание графического и алгебраического методов решения уравнений.

3

19.02

26.02

5.03


13

Комбинированные задачи с модулем и параметрами. Обобщенный метод областей.

5

12.03

19.03

2.04

9.04

16.04


14

Нетрадиционные задачи.

Задачи повышенной сложности из ЕГЭ.

6

23.04

30.04

7.05

14.05

21.05

28.05



Итого:

35




Календарно-тематическое планирование ( 2 группа)

п/п

Название темы

Количество часов

Дата

план

факт

1

Понятие модуля. Решение уравнений по определению модуля.

2

5.09

12.09


2

Построение графиков, содержащих знак модуля

2

19.09

26.09


3

Решение уравнений с переходом к системе или совокупности уравнений.

3

3.10

10.10

17.10


4

Рациональные неравенства с модулем. Обобщенный метод интервалов.

2

24.10

7.11


5

Простейшие задачи с параметрами.

1

14.11


6

Задачи с параметром, сводящиеся к использованию квадратного трехчлена.

2

21.11

28.11


7

Использование графических иллюстраций в задачах с параметрами.

2

5.12

12.12


8

Приемы составления задач с параметрами, используя графики различных соответствий и уравнений.

1

19.12


9

Использование ограниченности функций, входящих в левую и правую части уравнений и неравенств.

2

26.12

16.01


10

Метод приведения к уравнению относительно неизвестной х с параметром у.

2

23.01

30.01


11

Графический способ решения уравнений и неравенств.

2

6.02

13.02


12

Сочетание графического и алгебраического методов решения уравнений.

3

20.02

27.02

6.03


13

Комбинированные задачи с модулем и параметрами. Обобщенный метод областей.

5

13.03

20.03

3.04

10.04

17.04


14

Нетрадиционные задачи.

Задачи повышенной сложности из ЕГЭ.

6

24.04

8.05

15.05

22.05

29.05



Итого:

35





УЧЕБНО- МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ

  1. Горнштейн П.И., Полонский В. Б., Якир М.С. Задачи с параметрами.

  2. Шарыгин И.Ф. Факультативный курс по математике "Решение задач" (10 класс).

  3. Шарыгин И.Ф., Голубев. В. И. Факультативный курс по математике "Решение задач" (11 класс).

  4. Кухарчик П.Д., Федосенко B.C., Сборник конкурсных задач по математике. М., Наука, 1986.

  5. Задачи по математике. Уравнения и неравенства. Справочное пособие./ Вавилов В.В., Мельников И.И., Олехник С.Н., Пасиченко П.И. –М.: Наука; 1987.

  6. Черкасов О.Ю., Якушев А.Г. «Математика: интенсивный курс подготовки к экзамену». – 6-е изд., испр. и доп. – М.: Рольф, 2002. – (Домашний репетитор)

  7. Балаян Э.Н. Математика. Сам себе репетитор. Задачи повышенной сложности. Серия «Абитуриент», Ростов на –Дону: Изд-во «Феникс», 2004.

  8. «Математика абитуриенту. Версия 2.0.: «1145 задач по математике», компакт – диск для работы на компьютере.

  9. «Тригонометрия. Более 500 задач с подсказками и решениями», компакт – диск для работы на компьютере.

  10. «Репетитор: Математика, часть 1», компакт – диск для работы на компьютере.

  11. «Алгебра 7 – 11 класс» , электронный учебник – справочник, компакт – диск для работы на компьютере.

  12. «Математика 5 – 11 классы. Практикум», учебное электронное издание, компакт – диск для работы на компьютере.