СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Рабочая программа по физике 10-11классы базовый уровень 2 час 2024-25 уч.г.

Категория: Физика

Нажмите, чтобы узнать подробности

Программа по физике для 10-11 классов базовый уровень 2 часа в неделю. Лабораторные работы используютсы в основном на базе учебника.

Просмотр содержимого документа
«Рабочая программа по физике 10-11классы базовый уровень 2 час 2024-25 уч.г.»

Муниципальное бюджетное общеобразовательное учреждение

средняя общеобразовательная школа г. Зернограда



РАБОЧАЯ ПРОГРАММА


по физике

Уровень общего образования (класс): среднее общее образование 10-11 классы

Количество часов: 68

Учитель: Сидорцов И.Г.

Программа разработана на основе программы (ID 5026677) учебного предмета «Физика. Базовый уровень» для обучающихся 10-11 классов 2024 г. https://edsoo.ru/konstruktor-rabochih-programm






























2024-2025 учебный год



СОДЕРЖАНИЕ ОБУЧЕНИЯ


10 КЛАСС


Раздел 1. Физика и методы научного познания

Физика – наука о природе. Научные методы познания окружающего мира. Роль эксперимента и теории в процессе познания природы. Эксперимент в физике.

Моделирование физических явлений и процессов. Научные гипотезы. Физические законы и теории. Границы применимости физических законов. Принцип соответствия.

Роль и место физики в формировании современной научной картины мира, в практической деятельности людей.

Демонстрации

Аналоговые и цифровые измерительные приборы, компьютерные датчики.


Раздел 2. Механика

Тема 1. Кинематика

Механическое движение. Относительность механического движения. Система отсчёта. Траектория.

Перемещение, скорость (средняя скорость, мгновенная скорость) и ускорение материальной точки, их проекции на оси системы координат. Сложение перемещений и сложение скоростей.

Равномерное и равноускоренное прямолинейное движение. Графики зависимости координат, скорости, ускорения, пути и перемещения материальной точки от времени.

Свободное падение. Ускорение свободного падения.

Криволинейное движение. Движение материальной точки по окружности с постоянной по модулю скоростью. Угловая скорость, линейная скорость. Период и частота обращения. Центростремительное ускорение.

Технические устройства и практическое применение: спидометр, движение снарядов, цепные и ремённые передачи.

Демонстрации

Модель системы отсчёта, иллюстрация кинематических характеристик движения.

Преобразование движений с использованием простых механизмов.

Падение тел в воздухе и в разреженном пространстве.

Наблюдение движения тела, брошенного под углом к горизонту и горизонтально.

Измерение ускорения свободного падения.

Направление скорости при движении по окружности.

Ученический эксперимент, лабораторные работы

Изучение неравномерного движения с целью определения мгновенной скорости.

Исследование соотношения между путями, пройденными телом за последовательные равные промежутки времени при равноускоренном движении с начальной скоростью, равной нулю.

Изучение движения шарика в вязкой жидкости.

Изучение движения тела, брошенного горизонтально.

Тема 2. Динамика

Принцип относительности Галилея. Первый закон Ньютона. Инерциальные системы отсчёта.

Масса тела. Сила. Принцип суперпозиции сил. Второй закон Ньютона для материальной точки. Третий закон Ньютона для материальных точек.

Закон всемирного тяготения. Сила тяжести. Первая космическая скорость.

Сила упругости. Закон Гука. Вес тела.

Трение. Виды трения (покоя, скольжения, качения). Сила трения. Сухое трение. Сила трения скольжения и сила трения покоя. Коэффициент трения. Сила сопротивления при движении тела в жидкости или газе.

Поступательное и вращательное движение абсолютно твёрдого тела.

Момент силы относительно оси вращения. Плечо силы. Условия равновесия твёрдого тела.

Технические устройства и практическое применение: подшипники, движение искусственных спутников.

Демонстрации

Явление инерции.

Сравнение масс взаимодействующих тел.

Второй закон Ньютона.

Измерение сил.

Сложение сил.

Зависимость силы упругости от деформации.

Невесомость. Вес тела при ускоренном подъёме и падении.

Сравнение сил трения покоя, качения и скольжения.

Условия равновесия твёрдого тела. Виды равновесия.

Ученический эксперимент, лабораторные работы

Изучение движения бруска по наклонной плоскости.

Исследование зависимости сил упругости, возникающих в пружине и резиновом образце, от их деформации.

Исследование условий равновесия твёрдого тела, имеющего ось вращения.

Тема 3. Законы сохранения в механике

Импульс материальной точки (тела), системы материальных точек. Импульс силы и изменение импульса тела. Закон сохранения импульса. Реактивное движение.

Работа силы. Мощность силы.

Кинетическая энергия материальной точки. Теорема об изменении кинетической энергии.

Потенциальная энергия. Потенциальная энергия упруго деформированной пружины. Потенциальная энергия тела вблизи поверхности Земли.

Потенциальные и непотенциальные силы. Связь работы непотенциальных сил с изменением механической энергии системы тел. Закон сохранения механической энергии.

Упругие и неупругие столкновения.

Технические устройства и практическое применение: водомёт, копёр, пружинный пистолет, движение ракет.

Демонстрации

Закон сохранения импульса.

Реактивное движение.

Переход потенциальной энергии в кинетическую и обратно.

Ученический эксперимент, лабораторные работы

Изучение абсолютно неупругого удара с помощью двух одинаковых нитяных маятников.

Исследование связи работы силы с изменением механической энергии тела на примере растяжения резинового жгута.


Раздел 3. Молекулярная физика и термодинамика

Тема 1. Основы молекулярно-кинетической теории

Основные положения молекулярно-кинетической теории и их опытное обоснование. Броуновское движение. Диффузия. Характер движения и взаимодействия частиц вещества. Модели строения газов, жидкостей и твёрдых тел и объяснение свойств вещества на основе этих моделей. Масса и размеры молекул. Количество вещества. Постоянная Авогадро.

Тепловое равновесие. Температура и её измерение. Шкала температур Цельсия.

Модель идеального газа. Основное уравнение молекулярно-кинетической теории идеального газа. Абсолютная температура как мера средней кинетической энергии теплового движения частиц газа. Шкала температур Кельвина. Газовые законы. Уравнение Менделеева–Клапейрона. Закон Дальтона. Изопроцессы в идеальном газе с постоянным количеством вещества. Графическое представление изопроцессов: изотерма, изохора, изобара.

Технические устройства и практическое применение: термометр, барометр.

Демонстрации

Опыты, доказывающие дискретное строение вещества, фотографии молекул органических соединений.

Опыты по диффузии жидкостей и газов.

Модель броуновского движения.

Модель опыта Штерна.

Опыты, доказывающие существование межмолекулярного взаимодействия.

Модель, иллюстрирующая природу давления газа на стенки сосуда.

Опыты, иллюстрирующие уравнение состояния идеального газа, изопроцессы.

Ученический эксперимент, лабораторные работы

Определение массы воздуха в классной комнате на основе измерений объёма комнаты, давления и температуры воздуха в ней.

Исследование зависимости между параметрами состояния разреженного газа.

Тема 2. Основы термодинамики

Термодинамическая система. Внутренняя энергия термодинамической системы и способы её изменения. Количество теплоты и работа. Внутренняя энергия одноатомного идеального газа. Виды теплопередачи: теплопроводность, конвекция, излучение. Удельная теплоёмкость вещества. Количество теплоты при теплопередаче.

Понятие об адиабатном процессе. Первый закон термодинамики. Применение первого закона термодинамики к изопроцессам. Графическая интерпретация работы газа.

Второй закон термодинамики. Необратимость процессов в природе.

Тепловые машины. Принципы действия тепловых машин. Преобразования энергии в тепловых машинах. Коэффициент полезного действия тепловой машины. Цикл Карно и его коэффициент полезного действия. Экологические проблемы теплоэнергетики.

Технические устройства и практическое применение: двигатель внутреннего сгорания, бытовой холодильник, кондиционер.

Демонстрации

Изменение внутренней энергии тела при совершении работы: вылет пробки из бутылки под действием сжатого воздуха, нагревание эфира в латунной трубке путём трения (видеодемонстрация).

Изменение внутренней энергии (температуры) тела при теплопередаче.

Опыт по адиабатному расширению воздуха (опыт с воздушным огнивом).

Модели паровой турбины, двигателя внутреннего сгорания, реактивного двигателя.

Ученический эксперимент, лабораторные работы

Измерение удельной теплоёмкости.

Тема 3. Агрегатные состояния вещества. Фазовые переходы

Парообразование и конденсация. Испарение и кипение. Абсолютная и относительная влажность воздуха. Насыщенный пар. Удельная теплота парообразования. Зависимость температуры кипения от давления.

Твёрдое тело. Кристаллические и аморфные тела. Анизотропия свойств кристаллов. Жидкие кристаллы. Современные материалы. Плавление и кристаллизация. Удельная теплота плавления. Сублимация.

Уравнение теплового баланса.

Технические устройства и практическое применение: гигрометр и психрометр, калориметр, технологии получения современных материалов, в том числе наноматериалов, и нанотехнологии.

Демонстрации

Свойства насыщенных паров.

Кипение при пониженном давлении.

Способы измерения влажности.

Наблюдение нагревания и плавления кристаллического вещества.

Демонстрация кристаллов.

Ученический эксперимент, лабораторные работы

Измерение относительной влажности воздуха.


Раздел 4. Электродинамика

Тема 1. Электростатика

Электризация тел. Электрический заряд. Два вида электрических зарядов. Проводники, диэлектрики и полупроводники. Закон сохранения электрического заряда.

Взаимодействие зарядов. Закон Кулона. Точечный электрический заряд. Электрическое поле. Напряжённость электрического поля. Принцип суперпозиции электрических полей. Линии напряжённости электрического поля.

Работа сил электростатического поля. Потенциал. Разность потенциалов. Проводники и диэлектрики в электростатическом поле. Диэлектрическая проницаемость.

Электроёмкость. Конденсатор. Электроёмкость плоского конденсатора. Энергия заряженного конденсатора.

Технические устройства и практическое применение: электроскоп, электрометр, электростатическая защита, заземление электроприборов, конденсатор, копировальный аппарат, струйный принтер.

Демонстрации

Устройство и принцип действия электрометра.

Взаимодействие наэлектризованных тел.

Электрическое поле заряженных тел.

Проводники в электростатическом поле.

Электростатическая защита.

Диэлектрики в электростатическом поле.

Зависимость электроёмкости плоского конденсатора от площади пластин, расстояния между ними и диэлектрической проницаемости.

Энергия заряженного конденсатора.

Ученический эксперимент, лабораторные работы

Измерение электроёмкости конденсатора.

Тема 2. Постоянный электрический ток. Токи в различных средах

Электрический ток. Условия существования электрического тока. Источники тока. Сила тока. Постоянный ток.

Напряжение. Закон Ома для участка цепи.

Электрическое сопротивление. Удельное сопротивление вещества. Последовательное, параллельное, смешанное соединение проводников.

Работа электрического тока. Закон Джоуля–Ленца. Мощность электрического тока.

Электродвижущая сила и внутреннее сопротивление источника тока. Закон Ома для полной (замкнутой) электрической цепи. Короткое замыкание.

Электронная проводимость твёрдых металлов. Зависимость сопротивления металлов от температуры. Сверхпроводимость.

Электрический ток в вакууме. Свойства электронных пучков.

Полупроводники. Собственная и примесная проводимость полупроводников. Свойства p–n-перехода. Полупроводниковые приборы.

Электрический ток в растворах и расплавах электролитов. Электролитическая диссоциация. Электролиз.

Электрический ток в газах. Самостоятельный и несамостоятельный разряд. Молния. Плазма.

Технические устройства и практическое применение: амперметр, вольтметр, реостат, источники тока, электронагревательные приборы, электроосветительные приборы, термометр сопротивления, вакуумный диод, термисторы и фоторезисторы, полупроводниковый диод, гальваника.

Демонстрации

Измерение силы тока и напряжения.

Зависимость сопротивления цилиндрических проводников от длины, площади поперечного сечения и материала.

Смешанное соединение проводников.

Прямое измерение электродвижущей силы. Короткое замыкание гальванического элемента и оценка внутреннего сопротивления.

Зависимость сопротивления металлов от температуры.

Проводимость электролитов.

Искровой разряд и проводимость воздуха.

Односторонняя проводимость диода.

Ученический эксперимент, лабораторные работы

Изучение смешанного соединения резисторов.

Измерение электродвижущей силы источника тока и его внутреннего сопротивления.

Наблюдение электролиза.

Межпредметные связи

Изучение курса физики базового уровня в 10 классе осуществляется с учётом содержательных межпредметных связей с курсами математики, биологии, химии, географии и технологии.

Межпредметные понятия, связанные с изучением методов научного познания: явление, научный факт, гипотеза, физическая величина, закон, теория, наблюдение, эксперимент, моделирование, модель, измерение.

Математика: решение системы уравнений, линейная функция, парабола, гипербола, их графики и свойства, тригонометрические функции: синус, косинус, тангенс, котангенс, основное тригонометрическое тождество, векторы и их проекции на оси координат, сложение векторов.

Биология: механическое движение в живой природе, диффузия, осмос, теплообмен живых организмов (виды теплопередачи, тепловое равновесие), электрические явления в живой природе.

Химия: дискретное строение вещества, строение атомов и молекул, моль вещества, молярная масса, тепловые свойства твёрдых тел, жидкостей и газов, электрические свойства металлов, электролитическая диссоциация, гальваника.

География: влажность воздуха, ветры, барометр, термометр.

Технология: преобразование движений с использованием механизмов, учёт трения в технике, подшипники, использование закона сохранения импульса в технике (ракета, водомёт и другие), двигатель внутреннего сгорания, паровая турбина, бытовой холодильник, кондиционер, технологии получения современных материалов, в том числе наноматериалов, и нанотехнологии, электростатическая защита, заземление электроприборов, ксерокс, струйный принтер, электронагревательные приборы, электроосветительные приборы, гальваника.





11 КЛАСС


Раздел 4. Электродинамика

Тема 3. Магнитное поле. Электромагнитная индукция

Постоянные магниты. Взаимодействие постоянных магнитов. Магнитное поле. Вектор магнитной индукции. Принцип суперпозиции магнитных полей. Линии магнитной индукции. Картина линий магнитной индукции поля постоянных магнитов.

Магнитное поле проводника с током. Картина линий индукции магнитного поля длинного прямого проводника и замкнутого кольцевого проводника, катушки с током. Опыт Эрстеда. Взаимодействие проводников с током.

Сила Ампера, её модуль и направление.

Сила Лоренца, её модуль и направление. Движение заряженной частицы в однородном магнитном поле. Работа силы Лоренца.

Явление электромагнитной индукции. Поток вектора магнитной индукции. Электродвижущая сила индукции. Закон электромагнитной индукции Фарадея.

Вихревое электрическое поле. Электродвижущая сила индукции в проводнике, движущемся поступательно в однородном магнитном поле. Правило Ленца.

Индуктивность. Явление самоиндукции. Электродвижущая сила самоиндукции.

Энергия магнитного поля катушки с током.

Электромагнитное поле.

Технические устройства и практическое применение: постоянные магниты, электромагниты, электродвигатель, ускорители элементарных частиц, индукционная печь.

Демонстрации

Опыт Эрстеда.

Отклонение электронного пучка магнитным полем.

Линии индукции магнитного поля.

Взаимодействие двух проводников с током.

Сила Ампера.

Действие силы Лоренца на ионы электролита.

Явление электромагнитной индукции.

Правило Ленца.

Зависимость электродвижущей силы индукции от скорости изменения магнитного потока.

Явление самоиндукции.

Ученический эксперимент, лабораторные работы

Изучение магнитного поля катушки с током.

Исследование действия постоянного магнита на рамку с током.

Исследование явления электромагнитной индукции.


Раздел 5. Колебания и волны

Тема 1. Механические и электромагнитные колебания

Колебательная система. Свободные механические колебания. Гармонические колебания. Период, частота, амплитуда и фаза колебаний. Пружинный маятник. Математический маятник. Уравнение гармонических колебаний. Превращение энергии при гармонических колебаниях.

Колебательный контур. Свободные электромагнитные колебания в идеальном колебательном контуре. Аналогия между механическими и электромагнитными колебаниями. Формула Томсона. Закон сохранения энергии в идеальном колебательном контуре.

Представление о затухающих колебаниях. Вынужденные механические колебания. Резонанс. Вынужденные электромагнитные колебания.

Переменный ток. Синусоидальный переменный ток. Мощность переменного тока. Амплитудное и действующее значение силы тока и напряжения.

Трансформатор. Производство, передача и потребление электрической энергии. Экологические риски при производстве электроэнергии. Культура использования электроэнергии в повседневной жизни.

Технические устройства и практическое применение: электрический звонок, генератор переменного тока, линии электропередач.

Демонстрации

Исследование параметров колебательной системы (пружинный или математический маятник).

Наблюдение затухающих колебаний.

Исследование свойств вынужденных колебаний.

Наблюдение резонанса.

Свободные электромагнитные колебания.

Осциллограммы (зависимости силы тока и напряжения от времени) для электромагнитных колебаний.

Резонанс при последовательном соединении резистора, катушки индуктивности и конденсатора.

Модель линии электропередачи.

Ученический эксперимент, лабораторные работы

Исследование зависимости периода малых колебаний груза на нити от длины нити и массы груза.

Исследование переменного тока в цепи из последовательно соединённых конденсатора, катушки и резистора.

Тема 2. Механические и электромагнитные волны

Механические волны, условия распространения. Период. Скорость распространения и длина волны. Поперечные и продольные волны. Интерференция и дифракция механических волн.

Звук. Скорость звука. Громкость звука. Высота тона. Тембр звука.

Электромагнитные волны. Условия излучения электромагнитных волн. Взаимная ориентация векторов E, B, V в электромагнитной волне. Свойства электромагнитных волн: отражение, преломление, поляризация, дифракция, интерференция. Скорость электромагнитных волн.

Шкала электромагнитных волн. Применение электромагнитных волн в технике и быту.

Принципы радиосвязи и телевидения. Радиолокация.

Электромагнитное загрязнение окружающей среды.

Технические устройства и практическое применение: музыкальные инструменты, ультразвуковая диагностика в технике и медицине, радар, радиоприёмник, телевизор, антенна, телефон, СВЧ-печь.

Демонстрации

Образование и распространение поперечных и продольных волн.

Колеблющееся тело как источник звука.

Наблюдение отражения и преломления механических волн.

Наблюдение интерференции и дифракции механических волн.

Звуковой резонанс.

Наблюдение связи громкости звука и высоты тона с амплитудой и частотой колебаний.

Исследование свойств электромагнитных волн: отражение, преломление, поляризация, дифракция, интерференция.

Тема 3. Оптика

Геометрическая оптика. Прямолинейное распространение света в однородной среде. Луч света. Точечный источник света.

Отражение света. Законы отражения света. Построение изображений в плоском зеркале.

Преломление света. Законы преломления света. Абсолютный показатель преломления. Полное внутреннее отражение. Предельный угол полного внутреннего отражения.

Дисперсия света. Сложный состав белого света. Цвет.

Собирающие и рассеивающие линзы. Тонкая линза. Фокусное расстояние и оптическая сила тонкой линзы. Построение изображений в собирающих и рассеивающих линзах. Формула тонкой линзы. Увеличение, даваемое линзой.

Пределы применимости геометрической оптики.

Волновая оптика. Интерференция света. Когерентные источники. Условия наблюдения максимумов и минимумов в интерференционной картине от двух синфазных когерентных источников.

Дифракция света. Дифракционная решётка. Условие наблюдения главных максимумов при падении монохроматического света на дифракционную решётку.

Поляризация света.

Технические устройства и практическое применение: очки, лупа, фотоаппарат, проекционный аппарат, микроскоп, телескоп, волоконная оптика, дифракционная решётка, поляроид.

Демонстрации

Прямолинейное распространение, отражение и преломление света. Оптические приборы.

Полное внутреннее отражение. Модель световода.

Исследование свойств изображений в линзах.

Модели микроскопа, телескопа.

Наблюдение интерференции света.

Наблюдение дифракции света.

Наблюдение дисперсии света.

Получение спектра с помощью призмы.

Получение спектра с помощью дифракционной решётки.

Наблюдение поляризации света.

Ученический эксперимент, лабораторные работы

Измерение показателя преломления стекла.

Исследование свойств изображений в линзах.

Наблюдение дисперсии света.


Раздел 6. Основы специальной теории относительности

Границы применимости классической механики. Постулаты специальной теории относительности: инвариантность модуля скорости света в вакууме, принцип относительности Эйнштейна.

Относительность одновременности. Замедление времени и сокращение длины.

Энергия и импульс релятивистской частицы.

Связь массы с энергией и импульсом релятивистской частицы. Энергия покоя.


Раздел 7. Квантовая физика

Тема 1. Элементы квантовой оптики

Фотоны. Формула Планка связи энергии фотона с его частотой. Энергия и импульс фотона.

Открытие и исследование фотоэффекта. Опыты А. Г. Столетова. Законы фотоэффекта. Уравнение Эйнштейна для фотоэффекта. «Красная граница» фотоэффекта.

Давление света. Опыты П. Н. Лебедева.

Химическое действие света.

Технические устройства и практическое применение: фотоэлемент, фотодатчик, солнечная батарея, светодиод.

Демонстрации

Фотоэффект на установке с цинковой пластиной.

Исследование законов внешнего фотоэффекта.

Светодиод.

Солнечная батарея.

Тема 2. Строение атома

Модель атома Томсона. Опыты Резерфорда по рассеянию α -частиц. Планетарная модель атома. Постулаты Бора. Излучение и поглощение фотонов при переходе атома с одного уровня энергии на другой. Виды спектров. Спектр уровней энергии атома водорода.

Волновые свойства частиц. Волны де Бройля. Корпускулярно-волновой дуализм.

Спонтанное и вынужденное излучение.

Технические устройства и практическое применение: спектральный анализ (спектроскоп), лазер, квантовый компьютер.

Демонстрации

Модель опыта Резерфорда.

Определение длины волны лазера.

Наблюдение линейчатых спектров излучения.

Лазер.

Ученический эксперимент, лабораторные работы

Наблюдение линейчатого спектра.

Тема 3. Атомное ядро

Эксперименты, доказывающие сложность строения ядра. Открытие радиоактивности. Опыты Резерфорда по определению состава радиоактивного излучения. Свойства альфа-, бета-, гамма-излучения. Влияние радиоактивности на живые организмы.

Открытие протона и нейтрона. Нуклонная модель ядра Гейзенберга–Иваненко. Заряд ядра. Массовое число ядра. Изотопы.

Альфа-распад. Электронный и позитронный бета-распад. Гамма-излучение. Закон радиоактивного распада.

Энергия связи нуклонов в ядре. Ядерные силы. Дефект массы ядра.

Ядерные реакции. Деление и синтез ядер.

Ядерный реактор. Термоядерный синтез. Проблемы и перспективы ядерной энергетики. Экологические аспекты ядерной энергетики.

Элементарные частицы. Открытие позитрона.

Методы наблюдения и регистрации элементарных частиц.

Фундаментальные взаимодействия. Единство физической картины мира.

Технические устройства и практическое применение: дозиметр, камера Вильсона, ядерный реактор, атомная бомба.

Демонстрации

Счётчик ионизирующих частиц.

Ученический эксперимент, лабораторные работы

Исследование треков частиц (по готовым фотографиям).


Раздел 8. Элементы астрономии и астрофизики

Этапы развития астрономии. Прикладное и мировоззренческое значение астрономии.

Вид звёздного неба. Созвездия, яркие звёзды, планеты, их видимое движение.

Солнечная система.

Солнце. Солнечная активность. Источник энергии Солнца и звёзд. Звёзды, их основные характеристики. Диаграмма «спектральный класс – светимость». Звёзды главной последовательности. Зависимость «масса – светимость» для звёзд главной последовательности. Внутреннее строение звёзд. Современные представления о происхождении и эволюции Солнца и звёзд. Этапы жизни звёзд.

Млечный Путь – наша Галактика. Положение и движение Солнца в Галактике. Типы галактик. Радиогалактики и квазары. Чёрные дыры в ядрах галактик.

Вселенная. Расширение Вселенной. Закон Хаббла. Разбегание галактик. Теория Большого взрыва. Реликтовое излучение.

Масштабная структура Вселенной. Метагалактика.

Нерешённые проблемы астрономии.

Ученические наблюдения

Наблюдения невооружённым глазом с использованием компьютерных приложений для определения положения небесных объектов на конкретную дату: основные созвездия Северного полушария и яркие звёзды.

Наблюдения в телескоп Луны, планет, Млечного Пути.

Обобщающее повторение

Роль физики и астрономии в экономической, технологической, социальной и этической сферах деятельности человека, роль и место физики и астрономии в современной научной картине мира, роль физической теории в формировании представлений о физической картине мира, место физической картины мира в общем ряду современных естественно-научных представлений о природе.

Межпредметные связи

Изучение курса физики базового уровня в 11 классе осуществляется с учётом содержательных межпредметных связей с курсами математики, биологии, химии, географии и технологии.

Межпредметные понятия, связанные с изучением методов научного познания: явление, научный факт, гипотеза, физическая величина, закон, теория, наблюдение, эксперимент, моделирование, модель, измерение.

Математика: решение системы уравнений, тригонометрические функции: синус, косинус, тангенс, котангенс, основное тригонометрическое тождество, векторы и их проекции на оси координат, сложение векторов, производные элементарных функций, признаки подобия треугольников, определение площади плоских фигур и объёма тел.

Биология: электрические явления в живой природе, колебательные движения в живой природе, оптические явления в живой природе, действие радиации на живые организмы.

Химия: строение атомов и молекул, кристаллическая структура твёрдых тел, механизмы образования кристаллической решётки, спектральный анализ.

География: магнитные полюса Земли, залежи магнитных руд, фотосъёмка земной поверхности, предсказание землетрясений.

Технология: линии электропередач, генератор переменного тока, электродвигатель, индукционная печь, радар, радиоприёмник, телевизор, антенна, телефон, СВЧ-печь, проекционный аппарат, волоконная оптика, солнечная батарея.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ ПРОГРАММЫ ПО ФИЗИКЕ НА УРОВНЕ СРЕДНЕГО ОБЩЕГО ОБРАЗОВАНИЯ


Освоение учебного предмета «Физика» на уровне среднего общего образования (базовый уровень) должно обеспечить достижение следующих личностных, метапредметных и предметных образовательных результатов.


ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ

Личностные результаты освоения учебного предмета «Физика» должны отражать готовность и способность обучающихся руководствоваться сформированной внутренней позицией личности, системой ценностных ориентаций, позитивных внутренних убеждений, соответствующих традиционным ценностям российского общества, расширение жизненного опыта и опыта деятельности в процессе реализации основных направлений воспитательной деятельности, в том числе в части:

1) гражданского воспитания:

сформированность гражданской позиции обучающегося как активного и ответственного члена российского общества;

принятие традиционных общечеловеческих гуманистических и демократических ценностей;

готовность вести совместную деятельность в интересах гражданского общества, участвовать в самоуправлении в образовательной организации;

умение взаимодействовать с социальными институтами в соответствии с их функциями и назначением;

готовность к гуманитарной и волонтёрской деятельности;

2) патриотического воспитания:

сформированность российской гражданской идентичности, патриотизма;

ценностное отношение к государственным символам, достижениям российских учёных в области физики и техники;

3) духовно-нравственного воспитания:

сформированность нравственного сознания, этического поведения;

способность оценивать ситуацию и принимать осознанные решения, ориентируясь на морально-нравственные нормы и ценности, в том числе в деятельности учёного;

осознание личного вклада в построение устойчивого будущего;

4) эстетического воспитания:

эстетическое отношение к миру, включая эстетику научного творчества, присущего физической науке;

5) трудового воспитания:

интерес к различным сферам профессиональной деятельности, в том числе связанным с физикой и техникой, умение совершать осознанный выбор будущей профессии и реализовывать собственные жизненные планы;

готовность и способность к образованию и самообразованию в области физики на протяжении всей жизни;

6) экологического воспитания:

сформированность экологической культуры, осознание глобального характера экологических проблем;

планирование и осуществление действий в окружающей среде на основе знания целей устойчивого развития человечества;

расширение опыта деятельности экологической направленности на основе имеющихся знаний по физике;

7) ценности научного познания:

сформированность мировоззрения, соответствующего современному уровню развития физической науки;

осознание ценности научной деятельности, готовность в процессе изучения физики осуществлять проектную и исследовательскую деятельность индивидуально и в группе.


МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ


Познавательные универсальные учебные действия

Базовые логические действия:

самостоятельно формулировать и актуализировать проблему, рассматривать её всесторонне;

определять цели деятельности, задавать параметры и критерии их достижения;

выявлять закономерности и противоречия в рассматриваемых физических явлениях;

разрабатывать план решения проблемы с учётом анализа имеющихся материальных и нематериальных ресурсов;

вносить коррективы в деятельность, оценивать соответствие результатов целям, оценивать риски последствий деятельности;

координировать и выполнять работу в условиях реального, виртуального и комбинированного взаимодействия;

развивать креативное мышление при решении жизненных проблем.

Базовые исследовательские действия:

владеть научной терминологией, ключевыми понятиями и методами физической науки;

владеть навыками учебно-исследовательской и проектной деятельности в области физики, способностью и готовностью к самостоятельному поиску методов решения задач физического содержания, применению различных методов познания;

владеть видами деятельности по получению нового знания, его интерпретации, преобразованию и применению в различных учебных ситуациях, в том числе при создании учебных проектов в области физики;

выявлять причинно-следственные связи и актуализировать задачу, выдвигать гипотезу её решения, находить аргументы для доказательства своих утверждений, задавать параметры и критерии решения;

анализировать полученные в ходе решения задачи результаты, критически оценивать их достоверность, прогнозировать изменение в новых условиях;

ставить и формулировать собственные задачи в образовательной деятельности, в том числе при изучении физики;

давать оценку новым ситуациям, оценивать приобретённый опыт;

уметь переносить знания по физике в практическую область жизнедеятельности;

уметь интегрировать знания из разных предметных областей;

выдвигать новые идеи, предлагать оригинальные подходы и решения;

ставить проблемы и задачи, допускающие альтернативные решения.

Работа с информацией:

владеть навыками получения информации физического содержания из источников разных типов, самостоятельно осуществлять поиск, анализ, систематизацию и интерпретацию информации различных видов и форм представления;

оценивать достоверность информации;

использовать средства информационных и коммуникационных технологий в решении когнитивных, коммуникативных и организационных задач с соблюдением требований эргономики, техники безопасности, гигиены, ресурсосбережения, правовых и этических норм, норм информационной безопасности;

создавать тексты физического содержания в различных форматах с учётом назначения информации и целевой аудитории, выбирая оптимальную форму представления и визуализации.


Коммуникативные универсальные учебные действия:

осуществлять общение на уроках физики и во внеурочной деятельности;

распознавать предпосылки конфликтных ситуаций и смягчать конфликты;

развёрнуто и логично излагать свою точку зрения с использованием языковых средств;

понимать и использовать преимущества командной и индивидуальной работы;

выбирать тематику и методы совместных действий с учётом общих интересов и возможностей каждого члена коллектива;

принимать цели совместной деятельности, организовывать и координировать действия по её достижению: составлять план действий, распределять роли с учётом мнений участников, обсуждать результаты совместной работы;

оценивать качество своего вклада и каждого участника команды в общий результат по разработанным критериям;

предлагать новые проекты, оценивать идеи с позиции новизны, оригинальности, практической значимости;

осуществлять позитивное стратегическое поведение в различных ситуациях, проявлять творчество и воображение, быть инициативным.


Регулятивные универсальные учебные действия

Самоорганизация:

самостоятельно осуществлять познавательную деятельность в области физики и астрономии, выявлять проблемы, ставить и формулировать собственные задачи;

самостоятельно составлять план решения расчётных и качественных задач, план выполнения практической работы с учётом имеющихся ресурсов, собственных возможностей и предпочтений;

давать оценку новым ситуациям;

расширять рамки учебного предмета на основе личных предпочтений;

делать осознанный выбор, аргументировать его, брать на себя ответственность за решение;

оценивать приобретённый опыт;

способствовать формированию и проявлению эрудиции в области физики, постоянно повышать свой образовательный и культурный уровень.

Самоконтроль, эмоциональный интеллект:

давать оценку новым ситуациям, вносить коррективы в деятельность, оценивать соответствие результатов целям;

владеть навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов и оснований;

использовать приёмы рефлексии для оценки ситуации, выбора верного решения;

уметь оценивать риски и своевременно принимать решения по их снижению;

принимать мотивы и аргументы других при анализе результатов деятельности;

принимать себя, понимая свои недостатки и достоинства;

принимать мотивы и аргументы других при анализе результатов деятельности;

признавать своё право и право других на ошибки.

В процессе достижения личностных результатов освоения программы по физике для уровня среднего общего образования у обучающихся совершенствуется эмоциональный интеллект, предполагающий сформированность:

самосознания, включающего способность понимать своё эмоциональное состояние, видеть направления развития собственной эмоциональной сферы, быть уверенным в себе;

саморегулирования, включающего самоконтроль, умение принимать ответственность за своё поведение, способность адаптироваться к эмоциональным изменениям и проявлять гибкость, быть открытым новому;

внутренней мотивации, включающей стремление к достижению цели и успеху, оптимизм, инициативность, умение действовать исходя из своих возможностей;

эмпатии, включающей способность понимать эмоциональное состояние других, учитывать его при осуществлении общения, способность к сочувствию и сопереживанию;

социальных навыков, включающих способность выстраивать отношения с другими людьми, заботиться, проявлять интерес и разрешать конфликты.


ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

К концу обучения в 10 классе предметные результаты на базовом уровне должны отражать сформированность у обучающихся умений:

демонстрировать на примерах роль и место физики в формировании современной научной картины мира, в развитии современной техники и технологий, в практической деятельности людей;

учитывать границы применения изученных физических моделей: материальная точка, инерциальная система отсчёта, абсолютно твёрдое тело, идеальный газ, модели строения газов, жидкостей и твёрдых тел, точечный электрический заряд при решении физических задач;

распознавать физические явления (процессы) и объяснять их на основе законов механики, молекулярно-кинетической теории строения вещества и электродинамики: равномерное и равноускоренное прямолинейное движение, свободное падение тел, движение по окружности, инерция, взаимодействие тел, диффузия, броуновское движение, строение жидкостей и твёрдых тел, изменение объёма тел при нагревании (охлаждении), тепловое равновесие, испарение, конденсация, плавление, кристаллизация, кипение, влажность воздуха, повышение давления газа при его нагревании в закрытом сосуде, связь между параметрами состояния газа в изопроцессах, электризация тел, взаимодействие зарядов;

описывать механическое движение, используя физические величины: координата, путь, перемещение, скорость, ускорение, масса тела, сила, импульс тела, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы, находить формулы, связывающие данную физическую величину с другими величинами;

описывать изученные тепловые свойства тел и тепловые явления, используя физические величины: давление газа, температура, средняя кинетическая энергия хаотического движения молекул, среднеквадратичная скорость молекул, количество теплоты, внутренняя энергия, работа газа, коэффициент полезного действия теплового двигателя; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы, находить формулы, связывающие данную физическую величину с другими величинам;

описывать изученные электрические свойства вещества и электрические явления (процессы), используя физические величины: электрический заряд, электрическое поле, напряжённость поля, потенциал, разность потенциалов; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы; указывать формулы, связывающие данную физическую величину с другими величинами;

анализировать физические процессы и явления, используя физические законы и принципы: закон всемирного тяготения, I, II и III законы Ньютона, закон сохранения механической энергии, закон сохранения импульса, принцип суперпозиции сил, принцип равноправия инерциальных систем отсчёта, молекулярно-кинетическую теорию строения вещества, газовые законы, связь средней кинетической энергии теплового движения молекул с абсолютной температурой, первый закон термодинамики, закон сохранения электрического заряда, закон Кулона, при этом различать словесную формулировку закона, его математическое выражение и условия (границы, области) применимости;

объяснять основные принципы действия машин, приборов и технических устройств; различать условия их безопасного использования в повседневной жизни;

выполнять эксперименты по исследованию физических явлений и процессов с использованием прямых и косвенных измерений, при этом формулировать проблему/задачу и гипотезу учебного эксперимента, собирать установку из предложенного оборудования, проводить опыт и формулировать выводы;

осуществлять прямые и косвенные измерения физических величин, при этом выбирать оптимальный способ измерения и использовать известные методы оценки погрешностей измерений;

исследовать зависимости между физическими величинами с использованием прямых измерений, при этом конструировать установку, фиксировать результаты полученной зависимости физических величин в виде таблиц и графиков, делать выводы по результатам исследования;

соблюдать правила безопасного труда при проведении исследований в рамках учебного эксперимента, учебно-исследовательской и проектной деятельности с использованием измерительных устройств и лабораторного оборудования;

решать расчётные задачи с явно заданной физической моделью, используя физические законы и принципы, на основе анализа условия задачи выбирать физическую модель, выделять физические величины и формулы, необходимые для её решения, проводить расчёты и оценивать реальность полученного значения физической величины;

решать качественные задачи: выстраивать логически непротиворечивую цепочку рассуждений с опорой на изученные законы, закономерности и физические явления;

использовать при решении учебных задач современные информационные технологии для поиска, структурирования, интерпретации и представления учебной и научно-популярной информации, полученной из различных источников, критически анализировать получаемую информацию;

приводить примеры вклада российских и зарубежных учёных-физиков в развитие науки, объяснение процессов окружающего мира, в развитие техники и технологий;

использовать теоретические знания по физике в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;

работать в группе с выполнением различных социальных ролей, планировать работу группы, рационально распределять обязанности и планировать деятельность в нестандартных ситуациях, адекватно оценивать вклад каждого из участников группы в решение рассматриваемой проблемы.

К концу обучения в 11 классе предметные результаты на базовом уровне должны отражать сформированность у обучающихся умений:

демонстрировать на примерах роль и место физики в формировании современной научной картины мира, в развитии современной техники и технологий, в практической деятельности людей, целостность и единство физической картины мира;

учитывать границы применения изученных физических моделей: точечный электрический заряд, луч света, точечный источник света, ядерная модель атома, нуклонная модель атомного ядра при решении физических задач;

распознавать физические явления (процессы) и объяснять их на основе законов электродинамики и квантовой физики: электрическая проводимость, тепловое, световое, химическое, магнитное действия тока, взаимодействие магнитов, электромагнитная индукция, действие магнитного поля на проводник с током и движущийся заряд, электромагнитные колебания и волны, прямолинейное распространение света, отражение, преломление, интерференция, дифракция и поляризация света, дисперсия света, фотоэлектрический эффект (фотоэффект), световое давление, возникновение линейчатого спектра атома водорода, естественная и искусственная радиоактивность;

описывать изученные свойства вещества (электрические, магнитные, оптические, электрическую проводимость различных сред) и электромагнитные явления (процессы), используя физические величины: электрический заряд, сила тока, электрическое напряжение, электрическое сопротивление, разность потенциалов, электродвижущая сила, работа тока, индукция магнитного поля, сила Ампера, сила Лоренца, индуктивность катушки, энергия электрического и магнитного полей, период и частота колебаний в колебательном контуре, заряд и сила тока в процессе гармонических электромагнитных колебаний, фокусное расстояние и оптическая сила линзы, при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы, указывать формулы, связывающие данную физическую величину с другими величинами;

описывать изученные квантовые явления и процессы, используя физические величины: скорость электромагнитных волн, длина волны и частота света, энергия и импульс фотона, период полураспада, энергия связи атомных ядер, при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы, указывать формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;

анализировать физические процессы и явления, используя физические законы и принципы: закон Ома, законы последовательного и параллельного соединения проводников, закон Джоуля–Ленца, закон электромагнитной индукции, закон прямолинейного распространения света, законы отражения света, законы преломления света, уравнение Эйнштейна для фотоэффекта, закон сохранения энергии, закон сохранения импульса, закон сохранения электрического заряда, закон сохранения массового числа, постулаты Бора, закон радиоактивного распада, при этом различать словесную формулировку закона, его математическое выражение и условия (границы, области) применимости;

определять направление вектора индукции магнитного поля проводника с током, силы Ампера и силы Лоренца;

строить и описывать изображение, создаваемое плоским зеркалом, тонкой линзой;

выполнять эксперименты по исследованию физических явлений и процессов с использованием прямых и косвенных измерений: при этом формулировать проблему/задачу и гипотезу учебного эксперимента, собирать установку из предложенного оборудования, проводить опыт и формулировать выводы;

осуществлять прямые и косвенные измерения физических величин, при этом выбирать оптимальный способ измерения и использовать известные методы оценки погрешностей измерений;

исследовать зависимости физических величин с использованием прямых измерений: при этом конструировать установку, фиксировать результаты полученной зависимости физических величин в виде таблиц и графиков, делать выводы по результатам исследования;

соблюдать правила безопасного труда при проведении исследований в рамках учебного эксперимента, учебно-исследовательской и проектной деятельности с использованием измерительных устройств и лабораторного оборудования;

решать расчётные задачи с явно заданной физической моделью, используя физические законы и принципы, на основе анализа условия задачи выбирать физическую модель, выделять физические величины и формулы, необходимые для её решения, проводить расчёты и оценивать реальность полученного значения физической величины;

решать качественные задачи: выстраивать логически непротиворечивую цепочку рассуждений с опорой на изученные законы, закономерности и физические явления;

использовать при решении учебных задач современные информационные технологии для поиска, структурирования, интерпретации и представления учебной и научно-популярной информации, полученной из различных источников, критически анализировать получаемую информацию;

объяснять принципы действия машин, приборов и технических устройств, различать условия их безопасного использования в повседневной жизни;

приводить примеры вклада российских и зарубежных учёных-физиков в развитие науки, в объяснение процессов окружающего мира, в развитие техники и технологий;

использовать теоретические знания по физике в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;

работать в группе с выполнением различных социальных ролей, планировать работу группы, рационально распределять обязанности и планировать деятельность в нестандартных ситуациях, адекватно оценивать вклад каждого из участников группы в решение рассматриваемой проблемы.

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

10 КЛАСС

№ п/п

Наименование разделов и тем программы

Кол-во часов

Электронные (цифровые) образовательные ресурсы

Реализация воспитательного потенциала темы

Раздел 1. ФИЗИКА И МЕТОДЫ НАУЧНОГО ПОЗНАНИЯ

1.1

Физика и методы научного познания

2

Библиотека ЦОК https://m.edsoo.ru/7f41bf72

Осознавать единство и целостность окружающего мира, возможность его познаваемости и объяснимости на основе достижений науки.

Итого по разделу

2


Раздел 2. МЕХАНИКА

2.1

Кинематика

5

Библиотека ЦОК https://m.edsoo.ru/7f41bf72

Использовать знания о механических явлениях, законах механики и природе сил для понимания работы механических устройств и обеспечения безопасности при работе с ними. Самостоятельно планировать и проводить физические эксперименты.

2.2

Динамика

7

Библиотека ЦОК https://m.edsoo.ru/7f41bf72

2.3

Законы сохранения в механике

6

Библиотека ЦОК https://m.edsoo.ru/7f41bf72

Итого по разделу

18


Раздел 3. МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА

3.1

Основы молекулярно-кинетической теории

9

https://m.edsoo.ru/7f41bf72

На основе понимания основ МКТ термодинамики уметь объяснить различные явления и процессы в технических устройствах и природе и для обеспечения безопасности при обращении с приборами, техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде.

3.2

Основы термодинамики

10

Библиотека ЦОК https://m.edsoo.ru/7f41bf72

3.3

Агрегатные состояния вещества. Фазовые переходы

5

Библиотека ЦОК https://m.edsoo.ru/7f41bf72

Итого по разделу

24


Раздел 4. ЭЛЕКТРОДИНАМИКА

4.1

Электростатика

10

Библиотека ЦОК https://m.edsoo.ru/7f41bf72

Использовать знания об электромагнитных явлениях для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде. Научиться применять знания о законах электрических цепей для анализа работы электроприборов и выбора безопасных режимов их эксплуатации.

4.2

Постоянный электрический ток. Токи в различных средах

12

Библиотека ЦОК https://m.edsoo.ru/7f41bf72

Итого по разделу

22


Резервное время

2

Понимать необходимость систематического повторения и анализа изученного материала.

ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ

68


11 КЛАСС

№ п/п

Наименование разделов и тем программы

Количество часов

Электронные (цифровые) образовательные ресурсы

Реализация воспитательного потенциала темы

Раздел 1. ЭЛЕКТРОДИНАМИКА

1.1

Магнитное поле. Электромагнитная индукция

11

Библиотека ЦОК https://m.edsoo.ru/7f41c97c

Использовать знания об электромагнитных явлениях для обеспечения безопасности и норм экологического поведения при обращении с техническими устройствами. Сформировать уверенность в возможности познания природы, необходимости разумного использования достижений науки, уважение к учёным, чувство патриотизма. Знать влияния электромагнитных излучений на живые организмы. Научиться использовать экспериментальный метод исследований

Итого по разделу

11


Раздел 2. КОЛЕБАНИЯ И ВОЛНЫ

2.1

Механические и электромагнитные колебания

9

Библиотека ЦОК https://m.edsoo.ru/7f41c97c

Сформировать интерес к предмету. Характеризовать глобальные проблемы, стоящие перед человечеством: энергетические, сырьевые, экологические, – и роль физики в решении этих проблем. Объяснять принципы работы и характеристики изученных радиоэлектронных и оптических приборов и устройств.

Самостоятельно планировать и проводить физические эксперименты.

2.2

Механические и электромагнитные волны

5

Библиотека ЦОК https://m.edsoo.ru/7f41c97c

2.3

Оптика

10

Библиотека ЦОК https://m.edsoo.ru/7f41c97c

Итого по разделу

24


Раздел 3. ОСНОВЫ СПЕЦИАЛЬНОЙ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ

3.1

Основы специальной теории относительности

4

Библиотека ЦОК https://m.edsoo.ru/7f41c97c

Характеризовать системную связь между основополагающими научными понятиями: пространство, время, материя, движение, сила, энергии.

Итого по разделу

4


Раздел 4. КВАНТОВАЯ ФИЗИКА

4.1

Элементы квантовой оптики

6

Библиотека ЦОК https://m.edsoo.ru/7f41c97c

Понимать системную взаимосвязь между волновыми и квантовыми свойствами частц. Использовать знания основ квантовой физики для формирования современного мировоззрения и в повседневной жизни при обращении с современными техническими устройствами для сохранения здоровья и соблюдения норм экологического поведения.

Знать влияния радиоактивных излучений на живые организмы. Понимать принцип действия дозиметра и различать условия его использования. Понимать экологические проблемы, возникающие при использовании атомных электростанций, и пути решения этих проблем, перспективы использования управляемого термоядерного синтеза.

4.2

Строение атома

4

Библиотека ЦОК https://m.edsoo.ru/7f41c97c

4.3

Атомное ядро

5

Библиотека ЦОК https://m.edsoo.ru/7f41c97c

Итого по разделу

15


Раздел 5. ЭЛЕМЕНТЫ АСТРОНОМИИ И АСТРОФИЗИКИ

5.1

Элементы астрономии и астрофизики

7

Библиотека ЦОК https://m.edsoo.ru/7f41c97c

Осознавать ценность научных исследований Солнечной системы для практической деятельности и улучшения качества жизни. Использовать результаты научных исследований эволюции звезд для прогноза направлений развития человечества. Осознавать роль астрономии в расширении представлений об окружающем мире и ее вклад в улучшение качества жизни.

Итого по разделу

7


Раздел 6. ОБОБЩАЮЩЕЕ ПОВТОРЕНИЕ

6.1

Обобщающее повторение

4

Библиотека ЦОК https://m.edsoo.ru/7f41c97c

Понимать необходимость систематического повторения и анализа изученного материала.

Итого по разделу

4


Резервное время

3


ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ

68


ПОУРОЧНОЕ ПЛАНИРОВАНИЕ

10 КЛАСС

№ п/п

Тема урока

Кол-во

часов

Дата изучения

По плану

Фактически

1

Инструктаж по Т.Б. Физика – наука о природе. Научные методы познания.

1

02.09.2024


2

Роль и место физики в формировании современной научной картины мира и в практической деятельности людей

1

02.09.2024


3

Механическое движение, виды движений, его характеристики. Путь, перемещение.

1

09.09.2024


4

Равномерное прямолинейное движение

1

09.09.2024


5

Равноускоренное прямолинейное движение

1

16.09.2024


6

Свободное падение. Ускорение свободного падения

1

16.09.2024


7

Криволинейное движение. Движение материальной точки по окружности

1

23.09.2024


8

Контрольная работа №1 «Кинематика»

1

23.09.2024


9

Принцип относительности Галилея. Инерциальные системы отсчета. Первый закон Ньютона

1

30.09.2024


10

Масса тела. Сила. Принцип суперпозиции сил. Второй̆ закон Ньютона.

1

30.09.2024


11

Третий̆ закон Ньютона

1

07.10.2024


12

Закон всемирного тяготения. Сила тяжести. Первая космическая скорость

1

07.10.2024


13

Сила упругости. Закон Гука. Вес тела

1

14.10.2024


14

Сила трения. Коэффициент трения. Л/р №1 «Измерение коэффициента трения»

1

14.10.2024


15

Импульс и импульс силы. Закон сохранения импульса. Реактивное движение

1

21.10.2024


16

Работа и мощность силы. Кинетическая энергия материальной̆ точки. Теорема об изменении кинетической̆ энергии

1

21.10.2024


17

Потенциальная энергия. Потенциальная энергия упруго деформированной пружины. Потенциальная энергия тела вблизи поверхности Земли

1

11.11.2024


18

Потенциальные и непотенциальные силы. Связь работы непотенциальных сил с изменением механической̆ энергии системы тел. Закон сохранения механической̆ энергии

1

11.11.2024


19

Поступательное и вращательное движение абсолютно твёрдого тела. Основное уравнение динамики вращательного движения.

1

18.11.2024


20

Контрольная работа №2 «Динамика. Законы сохранения в механике»

1

18.11.2024


21

Основные положения МКТ. Броуновское движение.

1

25.11.2024


22

Масса молекул. Количество вещества. Температура и её измерение.

1

25.11.2024


23

Решение задач «Основные положения МКТ

1

02.12.2024


24

Характер движения и взаимодействия молекул. Строение газов, жидкостей и твёрдых тел

1

02.12.2024


25

Идеальный газ в МКТ. Основное уравнение МКТ

1

09.12.2024


26

Решение задач «Основное уравнение молекулярно-кинетической теории»

1

09.12.2024


27

Температура и тепловое равновесие.

1

16.12.2024


28

Определение температуры. Энергия теплового движения молекул

1

16.12.2024


29

Уравнение состояния идеального газа. Газовые законы и их графическое представление

1

23.12.2024


30

Л/р №2 «Экспериментальная проверка закона Гей-Люссака»

1

23.12.2024


31

Насыщенный пар. Давление насыщенного пара

1

30.12.2024


32

Влажность воздуха. Парообразование и конденсация. Испарение и кипение

1

30.12.2024


33

Свойства жидкости. Поверхностное натяжение. Смачивание. Капилляры

1

13.01.2025


34

Твёрдое тело. Кристаллические и аморфные тела. Анизотропия свойств кристаллов.

1

13.01.2025


35

Внутренняя энергия. Удельная теплоёмкость вещества. Адиабатный процесс

1

20.01.2025


36

Работа в термодинамике.

1

20.01.2025


37

Количество теплоты. Уравнение теплового баланса

1

27.01.2025


38

Первый закон термодинамики и его применение к изопроцессам

1

27.01.2025


39

Решение задач «Первый закон термодинамики»

1

03.02.2025


40

Необратимость процессов в природе. Второй закон термодинамики

1

03.02.2025


41

Принцип действия и КПД тепловой машины. Цикл Карно и его КПД

1

10.02.2025


42

Решение задач «КПД тепловых двигателей»

1

10.02.2025


43

Обобщающий урок «МКТ. Основы ТД». Экологические проблемы теплоэнергетики

1

17.02.2025


44

Контрольная работа №3 «Молекулярная физика. Основы термодинамики»

1

17.02.2025


45

Электрический заряд. Закон сохранения заряда. Закон Кулона

1

24.02.2025


46

Электрическое поле. Напряжённость электрического поля. Силовые линии

1

24.02.2025


47

Поле точечного заряда и заряженного шара. Принцип суперпозиции полей

1

03.03.2025


48

Решение задач «Напряжённость электрического поля.»

1

03.03.2025


49

Проводники и диэлектрики в электростатическом поле. Электростатическая защита

1

10.03.2025


50

Потенциальная энергия заряженного тела в однородном электростатическом поле. Потенциал и разность потенциалов

1

10.03.2025


51

Связь между напряжённостью электростатического поля и разностью потенциалов. Эквипотенциальные поверхности

1

17.03.2025


52

Электроёмкость. Единицы электроёмкости. Конденсатор.

1

17.03.2025


53

Энергия заряженного конденсатора. Применение конденсаторов

1

07.04.2025


54

Решение задач «Разность потенциалов. Энергия заряженного конденсатора»

1

07.04.2025


55

Электрический ток. Сила тока. Напряжение. Сопротивление. Закон Ома для участка цепи

1

14.04.2025


56

Последовательное, параллельное, смешанное соединение проводников. Л/р №3 «Изучение смешанного соединения резисторов»

1

14.04.2025


57

Работа и мощность электрического тока. Закон Джоуля-Ленца.

1

21.04.2025


58

Закон Ома для полной электрической цепи. Л/р №4 «Измерение ЭДС источника тока и его внутреннего сопротивления»

1

21.04.2025


59

Электронная проводимость твёрдых металлов. Зависимость сопротивления металлов от температуры. Сверхпроводимость

1

28.04.2025


60

Электрический ток в вакууме. Свойства электронных пучков.

1

28.04.2025


61

Полупроводники, их собственная и примесная проводимость. Свойства p–n-перехода. Полупроводниковые приборы

1

05.05.2025


62

Электрический̆ ток в растворах и расплавах электролитов. Электролитическая диссоциация. Электролиз.

1

05.05.2025


63

Электрический̆ ток в газах. Самостоятельный̆ и несамостоятельный̆ разряд. Молния. Плазма.

1

12.05.2025


64

Контрольная работа №4 по теме «Электростатика. Постоянный электрический ток. Токи в различных средах».

1

12.05.2025


65

Работа на ошибками. Обобщающий урок «Электродинамика». Профориентация «Технический университет ГА»

1

19.05.2025


66

Электрические приборы и устройства и их практическое применение. Профориентация «Технический университет Г А»

1

19.05.2025


67

Резервный урок. по теме "Электродинамика"

1

26.05.2025


68

Резервный урок. Обобщающий урок по темам 10 класса

1

26.05.2025


ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ

68


11 КЛАСС

№ п/п

Тема урока

Кол-во

часов

Дата изучения

По плану

Фактически

1

Взаимодействие постоянных магнитов. Магнитное поле. Вектор магнитной индукции. Линии магнитной индукции

1

02.09.2024


2

Магнитное поле проводника с током. Опыт Эрстеда. Взаимодействие проводников с током

1

02.09.2024


3

Лабораторная работа «Изучение магнитного поля катушки с током»

1

09.09.2024


4

Действие магнитного поля на проводник с током. Сила Ампера. Лабораторная работа «Исследование действия постоянного магнита на рамку с током»

1

09.09.2024


5

Действие магнитного поля на движущуюся заряженную частицу. Сила Лоренца.

1

16.09.2024


6

Электромагнитная индукция. Поток вектора магнитной индукции. Закон электромагнитной индукции Фарадея

1

16.09.2024


7

Лабораторная работа «Исследование явления электромагнитной индукции»

1

23.09.2024


8

Индуктивность. Явление самоиндукции. Энергия магнитного поля катушки с током. Электромагнитное поле

1

23.09.2024


9

Технические устройства и их применение: постоянные магниты, электромагниты, электродвигатель, ускорители элементарных частиц, индукционная печь

1

30.09.2024


10

Обобщающий урок «Магнитное поле. Электромагнитная индукция»

1

30.09.2024


11

Контрольная работа №1 по теме «Магнитное поле. Электромагнитная индукция»

1

07.10.2024


12

Свободные механические колебания. Гармонические колебания. Превращение энергии.

1

07.10.2024


13

Лабораторная работа «Исследование зависимости периода малых колебаний груза на нити от длины нити и массы груза»

1

14.10.2024


14

Колебательный контур. Свободные электромагнитные колебания в идеальном колебательном контуре.

1

14.10.2024


15

Формула Томсона. Закон сохранения энергии в идеальном колебательном контуре

1

21.10.2024


16

Затухающие колебания. Вынужденные механические колебания. Резонанс. Вынужденные электромагнитные колебания

1

21.10.2024


17

Переменный ток. Мощность переменного тока. Амплитудное и действующее значение силы тока и напряжения

1

11.11.2024


18

Трансформатор. Производство, передача и потребление электрической энергии

1

11.11.2024


19

Устройство электрического звонка, генератора переменного тока, линий электропередач

1

18.11.2024


20

Экологические риски при производстве электроэнергии. Культура использования электроэнергии в повседневной жизни

1

18.11.2024


21

Механические волны, условия распространения. Период. Скорость распространения и длина волны.

1

25.11.2024


22

Звук. Скорость звука. Громкость звука. Высота тона. Тембр звука

1

25.11.2024


23

Электромагнитные волны, их свойства и скорость. Шкала электромагнитных волн

1

02.12.2024


24

Принципы радиосвязи и телевидения. Развитие средств связи. Радиолокация

1

02.12.2024


25

Контрольная работа №2 «Колебания и волны»

1

09.12.2024


26

Прямолинейное распространение света в однородной среде. Точечный источник света. Луч света

1

09.12.2024


27

Отражение света. Законы отражения света. Построение изображений в плоском зеркале

1

16.12.2024


28

Преломление света. Полное внутреннее отражение.

1

16.12.2024


29

Лабораторная работа «Измерение показателя преломления стекла»

1

23.12.2024


30

Линзы. Построение изображений в линзе. Формула тонкой линзы. Увеличение линзы

1

23.12.2024


31

Лабораторная работа «Исследование свойств изображений в линзах»

1

30.12.2024


32

Дисперсия света. Цвет. Лабораторная работа «Наблюдение дисперсии света»

1

30.12.2024


33

Интерференция света. Дифракция света. Дифракционная решётка

1

13.01.2025


34

Поперечность световых волн. Поляризация света

1

13.01.2025


35

Оптические приборы и устройства и условия их безопасного применения

1

20.01.2025


36

Границы применимости классической механики. Постулаты специальной теории относительности

1

20.01.2025


37

Относительность одновременности. Замедление времени и сокращение длины

1

27.01.2025


38

Энергия и импульс релятивистской частицы. Связь массы с энергией и импульсом. Энергия покоя

1

27.01.2025


39

Контрольная работа№3 «Оптика. Основы специальной теории относительности»

1

03.02.2025


40

Фотоны. Формула Планка. Энергия и импульс фотона

1

03.02.2025


41

Открытие и исследование фотоэффекта. Опыты А. Г. Столетова

1

10.02.2025


42

Законы фотоэффекта. Уравнение Эйнштейна для фотоэффекта. «Красная граница» фотоэффекта

1

10.02.2025


43

Давление света. Опыты П. Н. Лебедева. Химическое действие света

1

17.02.2025


44

Технические устройства и практическое применение: фотоэлемент, фотодатчик, солнечная батарея, светодиод

1

17.02.2025


45

Решение задач по теме «Элементы квантовой оптики»

1

24.02.2025


46

Модель атома Томсона. Опыты Резерфорда по рассеянию α-частиц. Планетарная модель атома

1

24.02.2025


47

Постулаты Бора

1

03.03.2025


48

Излучение и поглощение фотонов при переходе атома с одного уровня энергии на другой. Спектры.

1

03.03.2025


49

Волновые свойства частиц. Волны де Бройля. Корпускулярно-волновой дуализм. Спонтанное и вынужденное излучение

1

10.03.2025


50

Открытие радиоактивности. Опыты Резерфорда по определению состава радиоактивного излучения

1

10.03.2025


51

Свойства альфа-, бета-, гамма-излучения. Влияние радиоактивности на живые организмы

1

17.03.2025


52

Открытие протона и нейтрона. Изотопы. Альфа-распад. Электронный и позитронный бета-распад.

1

17.03.2025


53

Энергия связи нуклонов в ядре. Ядерные реакции. Ядерный реактор. Проблемы, перспективы ядерной энергетики

1

07.04.2025


54

Элементарные частицы. Открытие позитрона. Методы наблюдения и регистрации элементарных частиц. Фундаментальные взаимодействия. Единство физической картины мира.

1

07.04.2025


55

Этапы развития астрономии. Прикладное и мировоззренческое значение астрономии. Вид звёздного неба. Созвездия, яркие звёзды, планеты, их видимое движение. Солнечная система

1

14.04.2025


56

Солнце. Солнечная активность. Источник энергии Солнца и звёзд

1

14.04.2025


57

Звёзды, их основные характеристики. Строение звёзд. Современные представления о происхождении и эволюции Солнца и звёзд.

1

21.04.2025


58

Млечный Путь — наша Галактика. Положение и движение Солнца в Галактике. Галактики. Чёрные дыры в ядрах галактик

1

21.04.2025


59

Вселенная. Разбегание галактик. Теория Большого взрыва. Реликтовое излучение. Метагалактика

1

28.04.2025


60

Нерешенные проблемы астрономии

1

28.04.2025


61

Контрольная работа №4 «Элементы астрономии и астрофизики»

1

05.05.2025


62

Роль физики и астрономии в деятельности человека

1

05.05.2025


63

Роль и место физики и астрономии в современной научной картине мира

1

12.05.2025


64

Роль физической теории в формировании представлений о физической картине мира

1

12.05.2025


65

Место физической картины мира в общем ряду современных естественно-научных представлений о природе

1

19.05.2025


66

Резервный урок. Магнитное поле. Электромагнитная индукция

1

19.05.2025


67

Резервный урок. Оптика. Основы специальной теории относительности

1

26.05.2025


68

Резерный урок. Квантовая физика. Элементы астрономии и астрофизики

1

26.05.2025


ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ

68


УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Рабочие программы к линии УМК Г. Я. Мякишева : учебно-методическое пособие / О. А. Крысанова, Г. Я. Мякишев. – М. : Дрофа, 2020

Библиотека ЦОК . Инфоурок. Мультиурок. Решу ЕГЭ.

ОБЯЗАТЕЛЬНЫЕ УЧЕБНЫЕ МАТЕРИАЛЫ ДЛЯ УЧЕНИКА

• Физика, 10 класс/ Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н.; под редакцией Парфентьевой Н.А. Акционерное общество «Издательство «Просвещение»

• Физика, 11 класс/ Мякишев Г.Л., Буховцев Б.Б., Чаругин В.М.; под редакцией Парфентьевой Н.А. Акционерное общество «Издательство «Просвещение»

• Астрономия: 10-11-е классы: учебник; 12-е издание, переработанное 10-11 класс/ Воронцов-Вельяминов Б.А., Страут Е.К. Акционерное общество «Издательство «Просвещение»


  1. График контрольных работ 10 класс

№ п/п

Вид работы, тема

Дата

1

К\р №1 по теме «Кинематика.»

17.09.2024г.

2

К\р №2 по теме «Динамика. Законы сохранения в механике.»

18.11.2024г.

3

К\р №3 по теме «Молекулярная физика. Основы термодинамики»

17.02.2025г.

4

К\р №4 по теме «Электростатика. Постоянный электрический ток. Токи в различных средах»

12.05.2025г.


  1. График контрольных работ 11 класс

№ п/п

Вид работы, тема

Дата

1

К\р №1 по теме «Магнитное поле. Электромагнитная индукция.»

7.10.2024 г.

2

К\р №2 по теме «Колебания и волны»

9.12.2024 г.

3

К\р №3 по теме «Оптика. Основы специальной теории относительности»

5.05.2025 г.

4

К\р №4 по теме «Элементы астрономии и астрофизики»

5.05.2025 г.



Составитель: Сидорцов Иван Георгиевич, учитель физики.

13