СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Рабочая программа учебной дисциплины «Математика: алгебра и начала математического анализа; геометрия» специальность 35.02.16 Эксплуатация и ремонт сельскохозяйственной техники и оборудования

Категория: Математика

Нажмите, чтобы узнать подробности

Рабочая программа общеобразовательной учебной дисциплина «Математика: алгебра и начала математического анализа; геометрия» (далее - «Математика») предназначена для изучения математики в            профессиональных образовательных организациях СПО, реализующих образовательную программу среднего общего образования в пределах освоения основной профессиональной образовательной программы СПО (ОПОП СПО) на базе основного общего образования при подготовке квалифицированных рабочих, служащих и специалистов среднего звена и является частью базовой основной профессиональной образовательной программы в соответствии с ФГОС по специальности технического профиля:

35.02.16 Эксплуатация и ремонт сельскохозяйственной техники и оборудования

Рабочая программа разработана на основе требований ФГОС среднего общего образования, предъявляемых к структуре, содержанию и результатам освоения учебной дисциплины «Математика», и в соответствии с Рекомендациями по организации получения среднего общего образования в пределах освоения образовательных программ среднего профессионального образования на базе основного общего образования с учетом Примерной основной образовательной программой среднего общего образования, одобренной решением федерального учебно-методического объединения по общему образованию (Протокол от 28 июня 2016г.№2/16-з).

Просмотр содержимого документа
«Рабочая программа учебной дисциплины «Математика: алгебра и начала математического анализа; геометрия» специальность 35.02.16 Эксплуатация и ремонт сельскохозяйственной техники и оборудования»

Филиал государственного автономного профессионального образовательного учреждения

Башкирский агропромышленный колледж р.п. Чишмы





РАССМОТРЕНО И СОГЛАСОВАНО УТВЕРЖДАЮ

на заседании ПЦК Заведующий филиалом

общеобразовательных дисциплин

Протокол №2 от «19» октября 2018 г. _______Г.Ф. Гайнутдинова Председатель

_________________ Ю.Н.Князева «____»___________ 2018 г.










РАБОЧАЯ ПРОГРАММА

учебной дисциплины «Математика:

алгебра и начала математического анализа; геометрия»

специальность 35.02.16

Эксплуатация и ремонт

сельскохозяйственной техники и оборудования















2018 г.

Рабочая программа учебной дисциплины ««Математика: алгебра и начала математического анализа; геометрия» (далее - «Математика») разработана на основе Федерального государственного образовательного стандарта (далее – ФГОС) по специальности среднего профессионального образования (далее СПО)

35.02.16 Эксплуатация и ремонт сельскохозяйственной техники и оборудования




Организация - разработчик: филиал государственного автономного профессионального

образовательного учреждения Башкирский

агропромышленный колледж р.п.Чишмы




Разработчики: Ялилова Г.В.. - преподаватель математики,

Хусаинова Ф.М. - преподаватель математики






Рассмотрено и утверждено на заседании

педагогического совета

Протокол №6 от "22" октября 2018 г.





















СОДЕРЖАНИЕ

Пояснительная записка………………………………………………….............……………………..4

Общая характеристика учебной дисциплины "Математика" ............................................................5

Место учебной дисциплины в учебном плане…………………………………………............…….7

Результаты освоения учебной дисциплины……………………………………….............………….7

Содержание учебной дисциплины……………………………………………..........………………11

Структура и содержание учебной дисциплины............…………………………………………….17

Тематический план и содержание учебной дисциплины «Математика» ……….........................18

Характеристика основных видов учебной деятельности студентов………………...........……….27

Учебно-методическое и материально-техническое обеспечение программы учебной дисциплины "Математика" ................................................................................................................ 35 Рекомендуемая литература……………………...........………………………………………………36

Контроль и оценка результатов освоения ..........................................................................................38









ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Рабочая программа общеобразовательной учебной дисциплина «Математика: алгебра и начала математического анализа; геометрия» (далее - «Математика») предназначена для изучения математики в профессиональных образовательных организациях СПО, реализующих образовательную программу среднего общего образования в пределах освоения основной профессиональной образовательной программы СПО (ОПОП СПО) на базе основного общего образования при подготовке квалифицированных рабочих, служащих и специалистов среднего звена и является частью базовой основной профессиональной образовательной программы в соответствии с ФГОС по специальности технического профиля:

35.02.16 Эксплуатация и ремонт сельскохозяйственной техники и оборудования

Рабочая программа разработана на основе требований ФГОС среднего общего образования, предъявляемых к структуре, содержанию и результатам освоения учебной дисциплины «Математика», и в соответствии с Рекомендациями по организации получения среднего общего образования в пределах освоения образовательных программ среднего профессионального образования на базе основного общего образования с учетом Примерной основной образовательной программой среднего общего образования, одобренной решением федерального учебно-методического объединения по общему образованию (Протокол от 28 июня 2016г.№2/16-з).

Содержание программы «Математика» направлено на достижение следующих целей:

  • обеспечения сформированности представлений о социальных, культурных и исторических факторах становления математики;

  • обеспечения сформированности логического, алгоритмического

и математического мышления;

  • обеспечения сформированности умений применять полученные знания при решении различных задач;

  • обеспечения сформированности представлений о математике как части общечеловеческой культуры, универсальном языке науки, позволяющем описывать и изучать реальные процессы и явления.

Рабочая программа учебной дисциплины «Математика» уточняет содержание учебного материала, последовательность его изучения, распределение учебных часов, тематику рефератов, виды самостоятельных работ, учитывая специфику программ подготовки квалифицированных рабочих, служащих и специалистов среднего звена, осваиваемой профессии или специальности.


ОБЩАЯ ХАРАКТЕРИСТИКА УЧЕБНОЙ ДИСЦИПЛИНЫ «Математика: алгебра и начала математического анализа; геометрия»

Математика является фундаментальной общеобразовательной дисциплиной со сложившимся устойчивым содержанием и общими требованиями к подготовке обучающихся.

В профессиональных образовательных организациях, реализующих образовательную программу среднего общего образования в пределах освоения ОПОП СПО на базе основного общего образования, изучение математики имеет свои особенности в зависимости от профиля профессионального образования.

При освоении специальностей СПО технического профиля профессионального образования, математика изучается более углубленно, как профильная учебная дисциплина, учитывающая специфику осваиваемых специальностей.

Это выражается через содержание обучения, количество часов, выделяемых на изучение отдельных тем программы, глубину их освоения обучающимися, через объем и характер практических занятий, виды внеаудиторной самостоятельной работы обучающихся.

Общие цели изучения математики традиционно реализуются в четырех направлениях:

1) общее представление об идеях и методах математики;

2) интеллектуальное развитие;

3) овладение необходимыми конкретными знаниями и умениями;

4) воспитательное воздействие.

Профилизация целей математического образования отражается на выборе приоритетов в организации учебной деятельности обучающихся. Для технического профиля профессионального образования выбор целей смещается в прагматическом направлении, предусматривающем усиление и расширение прикладного характера изучения математики., преимущественной ориентации на алгоритмический стиль познавательной деятельности.

Изучение математики как профильной общеобразовательной учебной дисциплины, учитывающей специфику осваиваемых обучающимися специальности СПО, обеспечивается:

  • выбором различных подходов к введению основных понятий;

  • формированием системы учебных заданий, обеспечивающих эффективное осуществление выбранных целевых установок;

  • обогащением спектра стилей учебной деятельности за счет согласования с ведущими деятельностными характеристиками выбранной профессии.

Профильная составляющая отражается в требованиях к подготовке обучающихся в части:

  • общей системы знаний: содержательные примеры использования математических идей и методов в профессиональной деятельности;

  • умений: различие в уровне требований к сложности применяемых алгоритмов;

  • практического использования приобретенных знаний и умений: индивидуального учебного опыта в построении математических моделей, выполнении исследовательских проектов.

Содержание учебной дисциплины разработано в соответствии с основными содержательными линиями обучения математике:

  • алгебраическая линия, включающая систематизацию сведений о числах; изучение новых и обобщение ранее изученных операций (возведение в степень, извлечение корня, логарифмирование, синус, косинус, тангенс, котангенс и обратные к ним); изучение новых видов числовых выражений и формул; совершенствование практических навыков и вычислительной культуры, расширение и совершенствование алгебраического аппарата, сформированного в основной школе, и его применение к решению математических и прикладных задач;

  • теоретико-функциональная линия, включающая систематизацию и расширение сведений о функциях, совершенствование графических умений; знакомство с основными идеями и методами математического анализа в объеме, позволяющем исследовать элементарные функции и решать простейшие геометрические, физические и другие прикладные задачи;

  • линия уравнений и неравенств, основанная на построении и исследовании математических моделей, пересекающаяся с алгебраической и теоретико-функциональной линиями и включающая развитие и совершенствование техники алгебраических преобразований для решения уравнений, неравенств и систем; формирование способности строить и исследовать простейшие математические модели при решении прикладных задач, задач из смежных и специальных дисциплин;

  • геометрическая линия, включающая наглядные представления о пространственных фигурах и изучение их свойств, формирование и развитие пространственного воображения, развитие способов геометрических измерений, координатного и векторного методов для решения математических и прикладных задач;

  • стохастическая линия, основанная на развитии комбинаторных умений, представлений о вероятностно-статистических закономерностях окружающего мира.

В тематическом плане рабочей программы учебный материал представлен в форме чередующегося развертывания основных содержательных линий (алгебраическая, теоретико-функциональная, уравнений и неравенств, геометрическая, стохастическая), что позволяет гибко использовать их расположение и взаимосвязь, составлять рабочий календарный план, по-разному чередуя учебные темы (главы учебника), учитывая профиль профессионального образования, специфику осваиваемой профессии СПО, глубину изучения материала, уровень подготовки обучающихся по математике.

Изучение общеобразовательной учебной дисциплины «Математика» завершается подведением итогов в форме экзамена в рамках промежуточной аттестации обучающихся в процессе освоения основной ОПОП СПО с получением среднего общего образования (ППКРС).


МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В УЧЕБНОМ ПЛАНЕ

Учебная дисциплина «Математика: алгебра и начала математического анализа; геометрия» является учебным предметом обязательной предметной области «Математика и информатика» ФГОС среднего общего образования.

Учебная дисциплина «Математика» изучается в общеобразовательном цикле учебного плана ОПОП СПО на базе основного общего образования с получением среднего общего образования (ППКРС).

В учебных планах ППКРС учебная дисциплина «Математика» входит в состав общих общеобразовательных учебных дисциплин, формируемых из обязательных предметных областей ФГОС среднего общего образования, для специальностей СПО технического профиля профессионального образования.


РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Освоение содержания учебной дисциплины «Математика» обеспечивает достижение обучающимися следующих результатов.

  • личностных:

  • сформированность представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, об идеях и методах математики;

  • понимание значимости математики для научно-технического прогресса, сформированность отношения к математике как к части общечеловеческой культуры через знакомство с историей развития математики, эволюцией математических идей;

  • развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для будущей профессиональной деятельности, для продолжения образования и самообразования;

  • овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для освоения смежных естественнонаучных дисциплин и дисциплин профессионального цикла, для получения образования в областях, не требующих углубленной математической подготовки;

  • готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;

  • готовность и способность к самостоятельной, творческой и ответственной деятельности;

  • готовность к коллективной работе, сотрудничеству со сверстниками в образовательной, общественно полезной, учебно­исследовательской, проектной и других видах деятельности;

  • отношение к профессиональной деятельности как возможности участия в решении личных, общественных, государственных, общенациональных проблем;

  • метапредметных:

  • умение самостоятельно определять цели деятельности и

  • составлять планы деятельности; самостоятельно осуществлять, контролировать и корректировать деятельность; использовать все возможные ресурсы для достижения поставленных целей и реализации планов деятельности; выбирать успешные стратегии в различных ситуациях;

  • умение продуктивно общаться и взаимодействовать в процессе совместной деятельности, учитывать позиции других участников деятельности, эффективно разрешать конфликты;

  • владение навыками познавательной, учебно-исследовательской и проектной деятельности, навыками разрешения проблем; способность и готовность к самостоятельному поиску методов решения практических задач, применению различных методов познания;

  • готовность и способность к самостоятельной информационно­-познавательной деятельности, включая умение ориентироваться в различных источниках информации, критически оценивать и интерпретировать информацию, получаемую из различных источников;

  • владение языковыми средствами - умение ясно, логично и точно излагать свою точку зрения, использовать адекватные языковые средства;

  • владение навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов и оснований, границ своего знания и незнания, новых познавательных задач и средств их достижения;

  • целеустремленность в поисках и принятии решений, сообразительность и интуиция, развитость пространственных представлений; способность воспринимать красоту и гармонию мира;

  • предметных:

  • сформированность представлений о математике как части мировой культуры и о месте математики в современной цивилизации, о способах описания на математическом языке явлений реального мира;

  • сформированность представлений о математических понятиях как о важнейших математических моделях, позволяющих описывать и изучать разные процессы и явления; понимание возможности аксиоматического построения математических теорий;

  • владение методами доказательств и алгоритмов решения, умение их применять, проводить доказательные рассуждения в ходе решения задач;

  • владение стандартными приёмами решения рациональных и

  • иррациональных, показательных, степенных, тригонометрических уравнений и неравенств, их систем; использование готовых компьютерных программ, в том числе для поиска пути решения и иллюстрации решения

  • уравнений и неравенств;

  • сформированность представлений об основных понятиях математического анализа и их свойствах, владение умением характеризовать поведение функций, использование полученных знаний для описания и анализа реальных зависимостей;

  • владение основными понятиями о плоских и пространственных геометрических фигурах, их основных свойствах; сформированность умения распознавать на чертежах, моделях и в реальном мире геометрические фигуры; применение изученных свойств геометрических фигур и формул для решения геометрических задач и задач с практическим содержанием;

  • сформированность представлений о процессах и явлениях, имеющих вероятностный характер, о статистических закономерностях в реальном мире, об основных понятиях элементарной теории вероятностей; умений находить и оценивать вероятности наступления событий в простейших практических ситуациях и основные характеристики случайных величин;

  • владение навыками использования готовых компьютерных программ при решении задач.

В результате изучения дисциплины обучающийся должен освоить общие компетенции:

ОК 01. Выбирать способы решения задач профессиональной деятельности, применительно к различным контекстам.

ОК 02. Осуществлять поиск, анализ и интерпретацию информации, необходимой для выполнения задач профессиональной деятельности.

ОК 03. Планировать и реализовывать собственное профессиональное и личностное развитие.

ОК 04. Работать в коллективе и команде, эффективно взаимодействовать с коллегами, руководством, клиентами.

ОК 05. Осуществлять устную и письменную коммуникацию на государственном языке с учетом особенностей социального и культурного контекста.

ОК 06. Проявлять гражданско-патриотическую позицию, демонстрировать осознанное поведение на основе традиционных общечеловеческих ценностей.

ОК 07. Содействовать сохранению окружающей среды, ресурсосбережению, эффективно действовать в чрезвычайных ситуациях.

ОК 08. Использовать средства физической культуры для сохранения и укрепления здоровья в процессе профессиональной деятельности и поддержания необходимого уровня физической подготовленности.

ОК 09. Использовать информационные технологии в профессиональной деятельности.

ОК 10. Пользоваться профессиональной документацией на государственном и иностранном языке.

ОК 11. Планировать предпринимательскую деятельность в профессиональной сфере.





















СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Введение

Математика в науке, технике, экономике, информационных технологиях и практической деятельности. Цели и задачи изучения математики при освоении профессий СПО

.

АЛГЕБРА

Развитие понятия о числе

Целые и рациональные числа. Действительные числа. Приближенные вычисления. Комплексные числа.

Практические занятия:

Арифметические действия над числами, нахождение приближенных значений величин и погрешностей вычислений (абсолютной и относительной), сравнение числовых выражений. Приближенные вычисления и решения прикладных задач.


Корни, степени и логарифмы

Корни и степени. Корни натуральной степени из числа и их свойства. Степени с рациональными показателями, их свойства. Степени с действительными показателями. Свойства степени с действительным показателем.

Логарифм. Логарифм числа. Основное логарифмическое тождество. Десятичные и натуральные логарифмы. Правила действий с логарифмами. Переход к новому основанию.

Преобразование алгебраических выражений. Преобразование рациональных, иррациональных степенных, показательных и логарифмических выражений.

Практические занятия:

Вычисление и сравнение корней. Выполнение расчетов с радикалами.

Решение иррациональных уравнений. Нахождение значений степеней с рациональными показателями. Сравнение степеней. Преобразования выражений, содержащих степени. Решение показательных уравнений.

Решение прикладных задач.

Нахождение значений логарифма по произвольному основанию. Переход от одного основания к другому. Вычисление и сравнение логарифмов. Логарифмирование и потенцирование выражений.

Решение логарифмических уравнений.


ОСНОВЫ ТРИГОНОМЕТРИИ

Основные понятия.

Радианная мера угла. Вращательное движение. Синус, косинус, тангенс и котангенс числа.

Основные тригонометрические тождества.

Формулы приведения. Формулы сложения. Формулы удвоения Формулы половинного угла.

Преобразования простейших тригонометрических выражений.

Преобразование суммы тригонометрических функций в произведение и произведения в сумму. Выражение тригонометрических функций через тангенс половинного аргумента.

Тригонометрические уравнения и неравенства.

Простейшие тригонометрические уравнения. Простейшие тригонометрические неравенства.

Обратные тригонометрические функции. Арксинус, арккосинус, арктангенс.

Практические занятия:

Радианный метод измерения углов вращения и связь с градусной мерой.

Основные тригонометрические тождества, формулы сложения, удвоения, преобразование суммы тригонометрических функций в произведение, преобразование произведения тригонометрических функций в сумму Простейшие тригонометрические уравнения и неравенства.

Обратные тригонометрические функции: арксинус, арккосинус, арктангенс.

ФУНКЦИИ, ИХ СВОЙСТВА И ГРАФИКИ

Функции. Область определения и множество значений; график функции, построение графиков функций, заданных различными способами.

Свойства функции: монотонность, четность, нечетность, ограниченность, периодичность. Промежутки возрастания и убывания, наибольшее и наименьшее значения, точки экстремума. Графическая интерпретация. Примеры функциональных зависимостей в реальных процессах и явлениях. Арифметические операции над функциями. Сложная функция (композиция). Понятие о непрерывности функции.

Обратные функции. Область определения и область значений обратной функции. График обратной функции.

Степенные, показательные, логарифмические и тригонометрические функции.

Обратные тригонометрические функции.

Определения функций, их свойства и графики.

Преобразования графиков. Параллельный перенос, симметрия относительно осей координат и симметрия относительно начала координат, симметрия относительно прямой y = х, растяжение и сжатие вдоль осей координат.


Практические занятия:

Примеры зависимостей между переменными в реальных процессах из смежных дисциплин. Определение функций. Построение и чтение графиков функций. Исследование функции. Свойства линейной, квадратичной, кусочно-линейной и дробно - линейной функций. Непрерывные и периодические функции. Свойства и графики синуса, косинуса, тангенса и котангенса. Обратные функции и их графики. Обратные тригонометрические функции. Преобразования графика функции. Гармонические колебания. Прикладные задачи.

Показательные, логарифмические , тригонометрические уравнения и неравенства.


НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА

Последовательности. Способы задания и свойства числовых последовательностей. Понятие о пределе последовательности. Существование предела монотонной ограниченной последовательности. Суммирование последовательностей. Бесконечно убывающая геометрическая прогрессия и ее сумма.

Производная. Понятие о производной функции, её геометрический и физический смысл. Уравнение касательной к графику функции. Производные суммы, разности, произведения, частного. Производные основных элементарных функций. Применение производной к исследованию функций и построению графиков. Производные обратной функции и композиции функции.

Примеры использования производной для нахождения наилучшего решения в прикладных задачах. Вторая производная, её геометрический и физический смысл. Нахождение скорости для процесса, заданного формулой и графиком.

Первообразная и интеграл. Применение определенного интеграла для нахождения площади криволинейной трапеции. Формула Ньютона- Лейбница. Примеры применения интеграла в физике и геометрии.

Практические занятия:

Числовая последовательность, способы ее задания, вычисления членов последовательности. Предел последовательности. Бесконечно убывающая геометрическая прогрессия.

Производная, механический и геометрический смысл производной.

Уравнение касательной в общем виде. Правила и формулы дифференцирования, таблица производных элементарных функций. Исследование функции с помощью производной. Нахождение наибольшего, наименьшего значения и экстремальных значений функции.

Интеграла и первообразная. Теорема Ньютона-Лейбница. Применение интеграла к вычислению физических величин и площадей.


УРАВНЕНИЯ И НЕРАВЕНСТВА

Уравнения и системы уравнений. Рациональные, иррациональные, показательные и тригонометрические уравнения и системы.

Равносильность уравнений, неравенств, систем.

Основные приемы их решения (разложение на множители, введение новых неизвестных, подстановка, графический метод).

Неравенства. Рациональные, иррациональные, показательные и тригонометрические неравенства. Основные приемы их решения. Использование свойств и графиков функций при решении уравнений и неравенств. Метод интервалов. Изображение на координатной плоскости множества решений уравнений и неравенств с двумя переменными и их систем.

Прикладные задачи. Применение математических методов для решения содержательных задач из различных областей науки и практики. Интерпретация результата, учет реальных ограничений.

Практические занятия:

Корни уравнений. Равносильность уравнений. Преобразование уравнений.

Основные приемы решения уравнений. Решение систем уравнений.

Использование свойств и графиков функций для решения уравнений и неравенств.

КОМБИНАТОРИКА, СТАТИСТИКА И ТЕОРИЯ ВЕРОЯТНОСТЕЙ

Элементы комбинаторики.

Основные понятия комбинаторики. Задачи на подсчет числа размещений, перестановок, сочетаний. Решение задач на перебор вариантов. Формула бинома Ньютона. Свойства биноминальных коэффициентов. Треугольник Паскаля.

Элементы теории вероятностей.

Событие, вероятность события, сложение и умножение вероятностей. Понятие о независимости событий. Дискретная случайная величина, закон ее распределения. Числовые характеристики дискретной случайной величины. Понятие о законе больших чисел.

Элементы математической статистики.

Представление данных (таблицы, диаграммы, графики), генеральная совокупность, выборка, среднее арифметическое, медиана. Понятие о задачах математической статистики.

Решение практических задач с применением вероятностных методов.

Практические занятия:

История развития комбинаторики, теории вероятностей и статистики и их роль в различных сферах человеческой жизнедеятельности. Правила комбинаторики. Решение комбинаторных задач. Размещения, сочетания и перестановки. Бином Ньютона и треугольник Паскаля. Прикладные задачи.

Классическое определение вероятности, свойства вероятностей, теорема о сумме вероятностей. Вычисление вероятностей. Прикладные задачи. Представление числовых данных. Прикладные задачи.


ГЕОМЕТРИЯ

Прямые и плоскости в пространстве

Взаимное расположение двух прямых в пространстве. Параллельность прямой и плоскости. Параллельность плоскостей. Перпендикулярность прямой и плоскости. Перпендикуляр и наклонная. Угол между прямой и плоскостью. Двугранный угол. Угол между плоскостями. Перпендикулярность двух плоскостей.

Геометрические преобразования пространства: параллельный перенос, симметрия относительно плоскости.

Параллельное проектирование. Площадь ортогональной проекции. Изображение пространственных фигур.

Многогранники

Вершины, ребра, грани многогранника. Развертка. Многогранные углы. Выпуклые многогранники. Теорема Эйлера.

Призма. Прямая и наклонная призма. Правильная призма. Параллелепипед. Куб.

Пирамида. Правильная пирамида. Усеченная пирамида. Тетраэдр. Симметрии в кубе, в параллелепипеде, в призме и пирамиде.

Сечения куба, призмы и пирамиды.

Представление о правильных многогранниках (тетраэдр, куб, октаэдр, додекаэдр и икосаэдр).

Тела и поверхности вращения

Цилиндр и конус. Усеченный конус. Основание, высота, боковая поверхность, образующая, развертка. Осевые сечения и сечения параллельные основанию.

Шар и сфера, их сечения. Касательная плоскость к сфере.

Измерения в геометрии

Объем и его измерение. Интегральная формула объема.

Формулы объема куба, прямоугольного параллелепипеда, призмы, цилиндра. Формулы объема пирамида и конуса. Формулы площади поверхностей цилиндра и конуса. Формулы объема шара и площади сферы. Подобие тел. Отношения площадей поверхностей и объемов подобных тел.



Координаты и векторы

Прямоугольная (декартова) система координат в пространстве. Формула расстояния между двумя точками. Уравнения сферы, плоскости и прямой.

Векторы. Модуль вектора. Равенство векторов. Сложение векторов. Умножение вектора на число. Разложение вектора по направлениям. Угол между двумя векторами. Проекция вектора на ось. Координаты вектора. Скалярное произведение векторов.

Использование координат и векторов при решении математических и прикладных задач.

Практические занятия:

Признаки взаимного расположения прямых. Угол между прямыми. Взаимное расположение прямых и плоскостей. Перпендикуляр и наклонная к плоскости. Угол между прямой и плоскостью. Теоремы о взаимном расположении прямой и плоскости. Теорема о трех перпендикулярах.

Признаки и свойства параллельных и перпендикулярных плоскостей.

Расстояние от точки до плоскости, от прямой до плоскости, расстояние между плоскостями, между скрещивающими прямыми, между произвольными фигурами в пространстве.

Параллельное проектирование и его свойства. Теорема о площади ортогональной проекции многоугольника. Взаимное расположение пространственных фигур.

Различные виды многогранников. Их изображения. Сечения, развертки многогранников. Площадь поверхности. Виды симметрий в пространстве. Симметрия тел вращения и многогранников. Вычисление площадей и объемов.

Векторы. Действия с векторами. Декартова система координат в пространстве.

Уравнение окружности, сферы, плоскости. Расстояние между точками. Действия с векторами, заданными координатами. Скалярное произведение векторов. Векторное уравнение прямой и плоскости. Использование векторов при доказательстве теорем стереометрии.











СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Объём учебной дисциплины и виды учебной работы

Вид учебной работы

Объём часов

1.Максимальная учебная нагрузка (всего)

258

2.Обязательная аудиторная учебная нагрузка (всего)

234

в том числе:


практические занятия

98

контрольные работы

27

3.Самостоятельная работа обучающегося (всего)

24

в том числе:

подготовка рефератов, докладов

решение задач

работа с учебной литературой


Итоговая аттестация в форме экзамена

6






Тематический план и содержание учебной дисциплины «Математика»

Наименование разделов и тем

Содержание учебного материала, практические работы, самостоятельная работа обучающихся

Объем часов

1

2

3

Введение

Содержание учебного материала

2

Математика в науке, технике, экономике, информационных технологиях и практической деятельности.

Цели и задачи изучения математики при освоении специальности СПО

2

Тема 1.

Развитие понятия о числе




Содержание учебного материала

10

Целые и рациональные числа. Действительные числа. Приближенные вычисления. Комплексные числа.

5

Практические занятия

3

Контрольная работа №1 по теме: «Развитие понятия о числе»

2

Самостоятельная работа

1

Подготовить (устно) ответы на вопросы для самоконтроля по теме: "Развитие понятия о числе" (работа с конспектом)


Тема 2.

Корни, степени, логарифмы



Содержание учебного материала

28


Корни и степени. Корни натуральной степени из числа и их свойства. Степени с рациональными показателями, их свойства. Степени с действительными показателями. Свойства степени с действительным показателем.

10

Логарифм. Логарифм числа. Основное логарифмическое тождество. Десятичные и натуральные логарифмы. Правила действий с логарифмами. Переход к новому основанию.

Преобразование алгебраических выражений. Преобразование рациональных, иррациональных степенных, показательных и логарифмических выражений.


Практические занятия

16

Контрольная работа №2 по теме : «Корни, степени, логарифмы»

2

Самостоятельная работа

3

  1. Выучить свойства степеней


  1. Выучить свойства корней. действительным

  2. Выучить свойства логарифмов

  3. Заполнить таблицу «Корни, степени и логарифмы».


Тема 3.

Прямые и плоскости в пространстве







Содержание учебного материала


20

Взаимное расположение двух прямых в пространстве. Параллельность прямой и плоскости. Параллельность плоскостей. Перпендикулярность прямой и плоскости. Перпендикуляр и наклонная. Угол между прямой и плоскостью. Двугранный угол. Угол между плоскостями. Перпендикулярность двух плоскостей.

Геометрические преобразования пространства: параллельный перенос, симметрия относительно плоскости.

Параллельное проектирование. Изображение пространственных фигур

8

Практические занятия

10

Контрольная работа №3 по теме: «Прямые и плоскости в пространстве»

2

Самостоятельная работа

2

  1. Подготовить сообщение на тему: "Параллельное проектирование."

  2. Подготовить (устно) ответы на вопросы для самоконтроля по теме: «Прямые и плоскости в пространстве»


Тема 4.

Элементы комбинаторики.



Содержание учебного материала

12

Основные понятия комбинаторики. Задачи на подсчет числа размещений, перестановок, сочетаний. Решение задач на перебор вариантов. Формула бинома Ньютона. Свойства биноминальных коэффициентов. Треугольник Паскаля.

6

Практические занятия

4

Контрольная работа №4 по теме: «Элементы комбинаторики»

2

Самостоятельная работа

1

Подготовить (устно) ответы на вопросы для самоконтроля по теме: «Элементы комбинаторики»


Тема 5.

Координаты и векторы








Содержание учебного материала

16

Прямоугольная (декартова) система координат в пространстве. Формула расстояния между двумя точками. Уравнения сферы, плоскости и прямой.

Векторы. Модуль вектора. Равенство векторов. Сложение векторов. Умножение вектора на число. Разложение вектора по направлениям. Угол между двумя векторами. Проекция вектора на ось. Координаты вектора. Скалярное произведение векторов.

Использование координат и векторов при решении математических и прикладных задач.

11

Практические занятия

3

Контрольная работа №5 по теме «Координаты и векторы»

2

Самостоятельная работа

1

Подготовить (устно) ответы на вопросы для самоконтроля по теме: «Координаты и векторы"


Тема 6

Основы тригонометрии

Содержание учебного материала

26

Основные понятия. Радианная мера угла. Вращательное движение. Синус, косинус, тангенс и котангенс числа.

Основные тригонометрические тождества. Формулы приведения. Формулы сложения. Формулы половинного угла.

Преобразования простейших тригонометрических выражений. Преобразования суммы тригонометрических функций в произведение и произведения в сумму. Выражение тригонометрических функций через тангенс половинного аргумента.

Тригонометрические уравнения и неравенства. Простейшие тригонометрические уравнения. Простейшие тригонометрические неравенства.

Обратные тригонометрические функции. Арксинус, арккосинус, арктангенс числа.

16

Практические занятия

8

Итоговая контрольная работа за 1 курс

2

Самостоятельная работа

3

  1. Решение тригонометрических уравнений по единичной окружности.

  2. Решение тригонометрических неравенств по единичной окружности.

  3. Подготовить (устно) ответы на вопросы для самоконтроля по теме: «Основы тригонометрии




Тема 7.

Функции, их свойства и графики



Содержание учебного материала

17

Функции. Область определения и множество значений; график функции, построение графиков функций, заданных различными способами.


10

Свойства функции: монотонность, четность, нечетность, ограниченность, периодичность. Промежутки возрастания и убывания, наибольшее и наименьшее значения, точки экстремума. Графическая интерпретация. Примеры функциональных зависимостей в реальных процессах и явлениях. Арифметические операции над функциями. Сложная функция (композиция)..Понятие о непрерывности функции

Обратные функции. Область определения и область значений обратной функции. График обратной функции.

Степенные, показательные, логарифмические и тригонометрические функции.Обратные тригонометрические функции. Определения функций, их свойства и графики.

Преобразования графиков. Параллельный перенос, симметрия относительно осей координат и симметрия относительно начала координат, симметрия относительно прямой y = х, растяжение и сжатие вдоль осей координат.


Практические занятия

5

Контрольная работа №7 по теме: «Функции, их свойства и графики»

2

Самостоятельная работа

2


  1. Решение задач на тему: Преобразование графиков функций

  2. Подготовить (устно) ответы на вопросы для самоконтроля по теме: «Основы тригонометрии»



Тема 8. Многогранники и круглые тела

Содержание учебного материала


26

8.1. Многогранники












Содержание учебного материала

18

Вершины, ребра, грани многогранника. Развертка. Многогранные углы. Выпуклые многогранники. Теорема Эйлера..

Призма. Прямая и наклонная призма. Правильная призма. Параллелепипед. Куб.

Пирамида. Правильная пирамида. Усеченная пирамида. Тетраэдр

Симметрии в кубе, в параллелепипеде, в призме и пирамиде.

Сечения куба, призмы и пирамиды.

Представление о правильных многогранниках (тетраэдр, куб, октаэдр, додекаэдр и икосаэдр).


10

Практические занятия

6

Контрольная работа №8 по теме «Многогранники»

2

Самостоятельная работа

2

  1. Подготовить сообщение на тему: "Правильные и полуправильные многогранники"

  2. Подготовить (устно) ответы на вопросы для самоконтроля по теме: «Многогранники»


8.2. Тела и поверхности вращения

Содержание учебного материала

8

Цилиндр и конус. Усеченный конус. Основание, высота, боковая поверхность, образующая, развертка. Осевые сечения и сечения, параллельные основанию.

Шар и сфера, их сечения. Касательная плоскость к сфере.

3

Практические занятия

4

Контрольная работа №9 по теме: «Тела и поверхности вращения»

1

Самостоятельная работа


1

Подготовить сообщение на тему: "Конические сечения и их применения в технике"



Тема 9.

Начала математического анализа








Содержание учебного материала

24

Последовательности. Способы задания и свойства числовых последовательностей. Понятие о пределе последовательности. Существование предела монотонной ограниченной последовательности. Суммирование последовательностей. Бесконечно убывающая геометрическая прогрессия и ее сумма.

Производная. Понятие о производной функции, её геометрический и физический смысл. Уравнение касательной к графику функции. Производные суммы, разности, произведения, частного. Производные основных элементарных функций. Применение производной к исследованию функций и построению графиков. Производные обратной функции и композиции функции.

Примеры использования производной для нахождения наилучшего решения в прикладных задачах. Вторая производная, ее геометрический и физический смысл. Нахождение скорости для процесса, заданного формулой и графиком.


14

Практические занятия


8

Контрольная работа №10 по теме «Начала математического анализа»

2

Самостоятельная работа


1

Подготовить (устно) ответы на вопросы для самоконтроля по теме: «Координаты и векторы"


Тема 10.

Интеграл и его применение








Содержание учебного материала


15

Первообразная и интеграл. Применение определенного интеграла для нахождения площади криволинейной трапеции. Формула Ньютона—Лейбница. Примеры применения интеграла в физике и геометрии

Объем и его измерение. Интегральная формула объема.

Формулы объема куба, прямоугольного параллелепипеда, призмы, цилиндра. Формулы объема пирамиды и конуса. Формулы площади поверхностей цилиндра и конуса. Формулы объема шара и площади сферы.

Подобие тел. Отношения площадей поверхностей и объемов подобных тел.

6

Практические занятия

7

Контрольная работа №11 по теме «Измерения в геометрии»

2

Самостоятельная работа

1

Работа с конспектами, учебной литературой



Тема 11.


Элементы

теории

вероятностей. Элементы математической статистики



Содержание учебного материала

12

Элементы теории вероятностей. Событие, вероятность события, сложение и умножение вероятностей. Понятие о независимости событий. Дискретная случайная величина, закон ее распределения. Числовые характеристики дискретной случайной величины. Понятие о законе больших чисел.

Элементы математической статистики. Представление данных (таблицы, диаграммы, графики), генеральная совокупность, выборка, среднее арифметическое, медиана. Понятие о задачах математической статистики.

Решение практических задач с применением вероятностных методов.

4

Практические занятия

6

Контрольная работа №12 по теме «Элементы теории вероятностей. Элементы математической статистики»

2

Самостоятельная работа

1

Подготовить сообщение на тему: " Схемы повторных испытаний Бернулли"


Тема 12.

Уравнения и

неравенства









Содержание учебного материала

20

Уравнения и системы уравнений. Рациональные, иррациональные, показательные и тригонометрические уравнения и системы.

Равносильность уравнений, неравенств, систем

Основные приемы их решения (разложение на множители, введение новых неизвестных, подстановка, графический метод).

Неравенства. Рациональные, иррациональные, показательные и тригонометрические неравенства. Основные приемы их решения.

Использование свойств и графиков функций при решении уравнений и неравенств. Метод интервалов. Изображение на координатной плоскости множества решений уравнений и неравенств с двумя переменными и их систем.

Прикладные задачи. Применение математических методов для решения содержательных задач из различных областей науки и практики. Интерпретация результата, учет реальных ограничений.

4

Практические занятия

14

Контрольная работа №13 по теме «Уравнения и неравенства »

2

Самостоятельная работа

2

  1. Графическое решение уравнений

  2. Графическое решение неравенств


Тема 13.

Предэкзаменационное повторение


Содержание учебного материала

6

.Вычисления с комплексными числами. Преобразование выражений содержащих радикалы. Вычисление степеней с рациональным показателем. Преобразования тригонометрических выражений. Вычисление производных. Задачи на максимум и минимум. Задачи на исследование функций. Вычисление первообразных. Вычисление интеграла и площади криволинейной трапеции. Вычисление площадей поверхностей многогранников, тел вращения.


Практические занятия

4

Итоговая контрольная работа

2


Самостоятельная работа

3


Повторение основных понятий и формул



Всего:

258

ХАРАКТЕРИСТИКА ОСНОВНЫХ ВИДОВ ДЕЯТЕЛЬНОСТИ ОБУЧАЮЩИХСЯ

Содержание обучения

Характеристика основных видов учебной деятельности обучающихся (на уровне учебных действий)


Введение

Ознакомление с ролью математики в науке, технике, экономике, информационных технологиях и практической деятельности.

Ознакомление с целями и задачами изучения математики при освоении профессий СПО и специальностей СПО


АЛГЕБРА


Развитие понятия

о числе

Выполнение арифметических действий над числами, сочетая устные и письменные приемы.

Нахождение приближенных значений величин и погрешностей вычислений (абсолютной и относительной); сравнение числовых выражений.

Нахождение ошибок в преобразованиях и вычислениях (относится ко всем пунктам программы)


Корни, степени, логарифмы

Ознакомление с понятием корня n-й степени, свойствами радикалов и правилами сравнения корней.

Формулирование определения корня и свойств корней. Вычисление и сравнение корней, выполнение прикидки значения корня.

Преобразование числовых и буквенных выражений, содержащих радикалы.

Выполнение расчетов по формулам, содержащим радикалы, осуществляя необходимые подстановки и преобразования.

Определение равносильности выражений с радикалами. Решение иррациональных уравнений.

Ознакомление с понятием степени с действительным показателем.

Нахождение значений степени, используя при необходимости инструментальные средства.

Записывание корня n-й степени в виде степени с дробным показателем и наоборот.

Формулирование свойств степеней. Вычисление степеней с рациональным показателем, выполнение прикидки значения степени, сравнение степеней.

Преобразование числовых и буквенных выражений, содержащих степени, применяя свойства. Решение показательных уравнений.

Ознакомление с применением корней и степеней при вычислении средних, делении отрезка в «золотом сечении». Решение прикладных задач на сложные проценты


Преобразование алгебраических выражений

Выполнение преобразований выражений, применение формул, связанных со свойствами степеней и логарифмов. Определение области допустимых значений логарифмического выражения. Решение логарифмических уравнений


ОСНОВЫ ТРИГОНОМЕТРИИ


Основные

понятия

Изучение радианного метода измерения углов вращения

их связи с градусной мерой. Изображение углов вращения на окружности, соотнесение величины угла с его расположением.

Формулирование определений тригонометрических функций для углов поворота и острых углов прямоугольного треугольника и объяснение их взаимосвязи


Основные тригонометрические тождества

Применение основных тригонометрических тождеств для вычисления значений тригонометрических функций по одной из них

Преобразования простейших тригонометрических выражений

Изучение основных формул тригонометрии: формулы сложения, удвоения, преобразования суммы тригонометрических функций в произведение и произведения в сумму и применение при вычислении значения тригонометрического выражения и упрощения его. Ознакомление со свойствами симметрии точек на единичной окружности и применение их для вывода формул приведения

Простейшие тригонометрические уравнения и неравенства

Решение по формулам и тригонометрическому кругу простейших тригонометрических уравнений.

Применение общих методов решения уравнений (приведение к линейному, квадратному, метод разложения на множители, замены переменной) при решении тригонометрических уравнений.

Умение отмечать на круге решения простейших тригонометрических неравенств

Арксинус, арккосинус, арктангенс числа

Ознакомление с понятием обратных тригонометрических функций.

Изучение определений арксинуса, арккосинуса, арктангенса числа, формулирование их, изображение на единичной окружности, применение при решении уравнений

ФУНКЦИИ, ИХ СВОЙСТВА И ГРАФИКИ

Функции.

Понятие о непрерывности функции

Ознакомление с понятием переменной, примерами зависимостей между переменными.

Ознакомление с понятием графика, определение принадлежности точки графику функции. Определение по формуле простейшей зависимости, вида ее графика. Выражение по формуле одной переменной через другие.

Ознакомление с определением функции, формулирование его.

Нахождение области определения и области значений функции

Свойства функции. Графическая интерпретация. Примеры функциональных зависимостей в реальных процессах и явлениях

Ознакомление с примерами функциональных зависимостей в реальных процессах из смежных дисциплин.

Ознакомление с доказательными рассуждениями некоторых свойств линейной и квадратичной функций, проведение исследования линейной, кусочно-линейной, дробно-линейной и квадратичной функций, построение их графиков. Построение и чтение графиков функций. Исследование функции.

Составление видов функций по данному условию, решение задач на экстремум.

Выполнение преобразований графика функции

Обратные функции

Изучение понятия обратной функции, определение вида и построение графика обратной функции, нахождение ее области определения и области значений. Применение свойств функций при исследовании уравнений и решении задач на экстремум. Ознакомление с понятием сложной функции

Степенные, показательные, логарифмические и тригонометрические функции. Обратные тригонометрические функции

Вычисление значений функций по значению аргумента. Определение положения точки на графике по ее координатам и наоборот.

Использование свойств функций для сравнения значений степеней и логарифмов.

Построение графиков степенных и логарифмических функций.

Решение показательных и логарифмических уравнений и неравенств по известным алгоритмам.

Ознакомление с понятием непрерывной периодической функции, формулирование свойств синуса и косинуса, построение их графиков.

Ознакомление с понятием гармонических колебаний и примерами гармонических колебаний для описания процессов в физике и других областях знания.

Ознакомление с понятием разрывной периодической функции, формулирование свойств тангенса и котангенса, построение их графиков.

Применение свойств функций для сравнения значений тригонометрических функций, решения тригонометрических уравнений.

Построение графиков обратных тригонометрических функций и определение по графикам их свойств.

Выполнение преобразования графиков

НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА

Последовательности

Ознакомление с понятием числовой последовательности, способами ее задания, вычислениями ее членов.

Ознакомление с понятием предела последовательности. Ознакомление с вычислением суммы бесконечного числового ряда на примере вычисления суммы бесконечно убывающей геометрической прогрессии.

Решение задач на применение формулы суммы бесконечно убывающей геометрической прогрессии

Производная и ее применение

Ознакомление с понятием производной.

Изучение и формулирование ее механического и геометрического смысла, изучение алгоритма вычисления производной на примере вычисления мгновенной скорости и углового коэффициента касательной.

Составление уравнения касательной в общем виде.

Усвоение правил дифференцирования, таблицы производных элементарных функций, применение для дифференцирования функций, составления уравнения касательной.

Изучение теорем о связи свойств функции и производной, формулировка их.

Проведение с помощью производной исследования функции, заданной формулой. Установление связи свойств функции и производной по их графикам. Применение производной для решения задач на нахождение наибольшего, наименьшего значения и на нахождение экстремума

Первообразная и интеграл

Ознакомление с понятием интеграла и первообразной. Изучение правила вычисления первообразной и теоремы Ньютона—Лейбница.

Решение задач на связь первообразной и ее производной, вычисление первообразной для данной функции.

Решение задач на применение интеграла для вычисления физических величин и площадей

УРАВНЕНИЯ И НЕРАВЕНСТВА

Уравнения и системы уравнений Неравенства и системы неравенств с двумя переменными

Ознакомление с простейшими сведениями о корнях алгебраических уравнений, понятиями исследования уравнений и систем уравнений.

Изучение теории равносильности уравнений и ее применения. Повторение записи решения стандартных уравнений, приемов преобразования уравнений для сведения к стандартному уравнению.

Решение рациональных, иррациональных, показательных и тригонометрических уравнений и систем.

Использование свойств и графиков функций для решения уравнений. Повторение основных приемов решения систем. Решение уравнений с применением всех приемов (разложения на множители, введения новых неизвестных, подстановки, графического метода).

Решение систем уравнений с применением различных способов. Ознакомление с общими вопросами решения неравенств и использование свойств и графиков функций при решении неравенств. Решение неравенств и систем неравенств с применением различных способов.

Применение математических методов для решения содержательных задач из различных областей науки и практики. Интерпретирование результатов с учетом реальных ограничений

ЭЛЕМЕНТЫ КОМБИНАТОРИКИ, ТЕОРИИ ВЕРОЯТНОСТЕЙ И СТАТИСТИКИ

Основные понятия комбинаторики

Изучение правила комбинаторики и применение при решении комбинаторных задач.

Решение комбинаторных задач методом перебора и по правилу умножения.

Ознакомление с понятиями комбинаторики: размещениями, сочетаниями, перестановками и формулами для их вычисления.

Объяснение и применение формул для вычисления размещений, перестановок и сочетаний при решении задач.

Ознакомление с биномом Ньютона и треугольником Паскаля. Решение практических задач с использованием понятий и правил комбинаторики

Элементы теории вероятностей

Изучение классического определения вероятности, свойств вероятности, теоремы о сумме вероятностей.

Рассмотрение примеров вычисления вероятностей. Решение задач на вычисление вероятностей событий

Представление данных (таблицы, диаграммы, графики)

Ознакомление с представлением числовых данных и их характеристиками.

Решение практических задач на обработку числовых данных, вычисление их характеристик

ГЕОМЕТРИЯ

Прямые и плоскости в пространстве

Формулировка и приведение доказательств признаков взаимного расположения прямых и плоскостей. Распознавание на чертежах и моделях различных случаев взаимного расположения прямых и плоскостей, аргументирование своих суждений.

Формулирование определений, признаков и свойств параллельных и перпендикулярных плоскостей, двугранных и линейных углов.

Выполнение построения углов между прямыми, прямой и плоскостью, между плоскостями по описанию и распознавание их на моделях.

Применение признаков и свойств расположения прямых и плоскостей при решении задач.

Изображение на рисунках и конструирование на моделях перпендикуляров и наклонных к плоскости, прямых, параллельных плоскостей, углов между прямой и плоскостью и обоснование построения.

Решение задач на вычисление геометрических величин. Описывание расстояния от точки до плоскости, от прямой до плоскости, между плоскостями, между скрещивающимися прямыми, между произвольными фигурами в пространстве.

Формулирование и доказывание основных теорем о расстояниях (теорем существования, свойства).

Изображение на чертежах и моделях расстояния и обоснование своих суждений. Определение и вычисление расстояний в пространстве. Применение формул и теорем планиметрии для решения задач.

Ознакомление с понятием параллельного проектирования и его свойствами. Формулирование теоремы о площади ортогональной проекции многоугольника.

Применение теории для обоснования построений и вычислений. Аргументирование своих суждений о взаимном расположении пространственных фигур

Многогранники

Описание и характеристика различных видов многогранников, перечисление их элементов и свойств.

Изображение многогранников и выполнение построения на изображениях и моделях многогранников.

Вычисление линейных элементов и углов в пространственных конфигурациях, аргументирование своих суждений.

Характеристика и изображение сечения, развертки многогранников, вычисление площадей поверхностей.

Построение простейших сечений куба, призмы, пирамиды. Применение фактов и сведений из планиметрии.

Ознакомление с видами симметрий в пространстве, формулирование определений и свойств. Характеристика симметрии тел вращения и многогранников.

Применение свойств симметрии при решении задач. Использование приобретенных знаний для исследования и моделирования несложных задач.

Изображение основных многогранников и выполнение рисунков по условиям задач

Тела и поверхности вращения

Ознакомление с видами тел вращения, формулирование их определений и свойств.

Формулирование теорем о сечении шара плоскостью и плоскости, касательной к сфере.

Характеристика и изображение тел вращения, их развертки, сечения.

Решение задач на построение сечений, вычисление длин, расстояний, углов, площадей. Проведение доказательных рассуждений при решении задач.

Применение свойств симметрии при решении задач на тела вращения, комбинацию тел.

Изображение основных круглых тел и выполнение рисунка по условию задачи

Измерения в геометрии

Ознакомление с понятиями площади и объема, аксиомами

и свойствами.

Решение задач на вычисление площадей плоских фигур с применением соответствующих формул и фактов из планиметрии.

Изучение теорем о вычислении объемов пространственных тел, решение задач на применение формул вычисления объемов.

Изучение формул для вычисления площадей поверхностей многогранников и тел вращения.

Ознакомление с методом вычисления площади поверхности сферы.

Решение задач на вычисление площадей поверхности пространственных тел

Координаты и векторы

Ознакомление с понятием вектора. Изучение декартовой системы координат в пространстве, построение по заданным координатам точек и плоскостей, нахождение координат точек.

Нахождение уравнений окружности, сферы, плоскости. Вычисление расстояний между точками.

Изучение свойств векторных величин, правил разложения векторов в трехмерном пространстве, правил нахождения координат вектора в пространстве, правил действий с векторами, заданными координатами.

Применение теории при решении задач на действия с векторами. Изучение скалярного произведения векторов, векторного уравнения прямой и плоскости. Применение теории при решении задач на действия с векторами, координатный метод, применение векторов для вычисления величин углов и расстояний.

Ознакомление с доказательствами теорем стереометрии о взаимном расположении прямых и плоскостей с использованием векторов



УЧЕБНО-МЕТОДИЧЕСКОЕ И МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ

ОБЕСПЕЧЕНИЕ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ

«Математика: алгебра и начала математического анализа; геометрия»

Освоение программы учебной дисциплины «Математика: алгебра и начала математического анализа; геометрия» осуществляется в филиале ГАПОУ БАК р.п.Чишмы в учебном кабинете «Математики, физики, электротехники и лаборатории электротехники и автоматизации», в котором имеется возможность обеспечить свободный доступ в Интернет во время учебного занятия и в период внеучебной деятельности обучающихся.

Помещение кабинета удовлетворяет требованиям Санитарно­эпидемиологических правил и нормативов (СанПиН 2.4.2 № 178-02) и оснащено типовым оборудованием, указанным в настоящих требованиях, в том числе специализированной учебной мебелью и средствами обучения, достаточными для выполнения требований к уровню подготовки обучающихся.

В кабинете имеется компьютер, посредством которого участники образовательного процесса могут просматривать визуальную информацию по математике, создавать презентации, видеоматериалы, иные документы.

В состав учебно-методического и материально-технического обеспечения программы учебной дисциплины «Математика: алгебра и начала математического анализа; геометрия» входят:

  • многофункциональный комплекс преподавателя

  • информационно-коммуникативные средства;

  • экранно-звуковые пособия;

  • комплект технической документации, в том числе паспорта на средства обучения, инструкции по их использованию и технике безопасности;

  • раздаточные материалы?

  • библиотечный фонд.

В процессе освоения программы учебной дисциплины «Математика: алгебра и начала математического анализа; геометрия» обучающиеся имеют возможность доступа к электронным учебным материалам по математике, имеющиеся в свободном доступе в системе Интернет (электронные книги, практикумы, тесты, материалы ЕГЭ и др.).




РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

Для обучающихся

Башмаков М.И. Математика: алгебра и начала математического анализа, геометрия: учебник для студентов профессиональных образовательных организаций, осваивающих профессии и специальности СПО. - М.,2015

Башмаков М.И. Математика: алгебра и начала математического анализа, геометрия: Сборник задач профильной направленности: учеб. пособие для студентов профессиональных образовательных организаций, осваивающих профессии и специальности СПО. - М.,2017

Башмаков М.И. Математика: алгебра и начала математического анализа, геометрия: Задачник: учеб. пособие для студентов профессиональных образовательных организаций, осваивающих профессии и специальности СПО. - М.,2014

Башмаков М.И. Математика: алгебра и начала математического анализа, геометрия: Электронный учеб.- метод. комплекс для студентов профессиональных образовательных организаций, осваивающих профессии и специальности СПО. - М.,2017

Башмаков М.И. Математика (базовый уровень). 10 класс. — М., 2014. Башмаков М.И. Математика (базовый уровень). 11 класс. — М., 2014. Башмаков М.И. Алгебра и начала анализа, геометрия. 10 класс. — М.,2013.

Гусев В.А., Григорьев С.Г., Иволгина С.В. Математика: алгебра и начала математического анализа, геометрия: учебник для студентов профессиональных образовательных организаций, осваивающих профессии и специальности СПО. – М.,2017

Колягин Ю.М., Ткачева М.В, Федерова Н.Е. и др. Математика: алгебра и начала математического анализа. Алгебра и начала математического анализа (базовый и углубленный уровни). 10 класc / под ред. А.Б.Жижченко. — М., 2014.

Колягин Ю.М., Ткачева М.В., Федерова Н.Е. и др. Математика: алгебра и начала математического анализа. Алгебра и начала математического анализа (базовый и углубленный уровни). 11 класс / под ред. А.Б.Жижченко. — М., 2014.



Для преподавателей

Об образовании в Российской Федерации: федер. закон от 29.12.2012. № 273-ФЗ (в ред. Федеральных законов от 07.05.2013 № 99-ФЗ, от 07.06.2013 № 120-ФЗ, от 02.07.2013 № 170-ФЗ, от 23.07.2013 № 203-ФЗ, от 25.11.2013 № 317-ФЗ, от 03.02.2014 № 11-ФЗ, от 03.02.2014 № 15-ФЗ, от 05.05.2014 № 84-ФЗ, от 27.05.2014 № 135-ФЗ, от 04.06.2014 № 148-ФЗ, с изм., внесенными Федеральным законом от 04.06.2014 № 145-ФЗ, в ред. от 03.07.2016, с изм. от 19.12.2016.)

Приказ Министерства образования и науки РФ от 17.05.2012 № 413 «Об утверждении федерального государственного образовательного стандарта среднего (полного) общего образования».

Приказ Министерства образования и науки РФ от 31 декабря 2015 г. № 1578 "О внесении изменений в федеральный государственный образовательный стандарт среднего общего образования, утвержденный приказом Министерства образования и науки Российской Федерации от 17 мая 2012 г. N413"

Письмо Департамента государственной политики в сфере подготовки рабочих кадров и ДПО Министерства образования и науки РФ от 17.03.2015 06-259 «Рекомендации по организации получения среднего общего образования в пределах освоения образовательных программ среднего профессионального образования на базе основного общего образования с учетом требований федеральных государственных образовательных стандартов и получаемой профессии или специальности среднего профессионального образования».

Примерная основная образовательная программа среднего общего образования, одобренная решением федерального учебно-методического объединения по общему образованию (протокол от 28 июня 2016 г. № 2/16-з).

Башмаков М.И. Математика. Книга для преподавателя. Методическое пособие. - М.:2013

Башмаков М.И. Ш.И. Цыганов. Методическое пособие для подготовки к ЕГЭ. - М.: 2014




Интернет-ресурсы

http://fcior.edu.ru - информационные, тренировочные и контрольные материалы.

www.school-collection.edu.ru - Единая коллекции Цифровых образовательных ресурсов











Контроль и оценка результатов освоения Дисциплины

Контроль и оценка результатов освоения дисциплины осуществляется преподавателем в процессе проведения практических занятий и лабораторных работ, тестирования, а также выполнения обучающимися индивидуальных заданий, проектов, исследований.


Результаты обучения

(освоенные умения, усвоенные знания)


Коды формируе

мых

общих компетен

ций

Основные показатели результатов

Формы и методы контроля и оценки результатов обучения

знания/понимание

• значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;

ОК02- ОК 09

Применения математических знаний при решении задач

Устный, письменный опросы;

оценка при выполнении практических заданий;

тестирование; контрольные работы.

• значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;

ОК02- ОК 09

Использование полученных знаний при решении тестовых и геометрических задач

• универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;

• вероятностный характер различных процессов окружающего мира;

ОК02- ОК 09

Применение законов логики во всех областях деятельности человека


уметь (алгебра и начала анализа)

• выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значения корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;

• проводить по известным формулам и правилам преобразования буквенных выражений, включающих степени, радикалы, логарифмы и тригонометрические функции;

• вычислять значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования;

ОК02- ОК 09



Выполнение арифметических действий;







Нахождение корня натуральной степени, степени с рациональным показателем, логарифма;


Применение основных формул и правил при выполнении упражнений, выражений, включающих степени, радикалы, логарифмы и тригонометрические функции



Устный, письменный опросы;

оценка при выполнении практических заданий; тестирование; контрольные работы.

• определять значение функции по значению аргумента при различных способах задания функции;

• строить графики изученных функций;

• описывать по графику и в простейших случаях по формуле поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения;

• решать уравнения, простейшие системы уравнений, используя свойства функций и их графиков;

ОК02- ОК 09

Использование свойств функций при решении текстовых, физических и геометрических задач.




Решение задач на нахождение наименьших и наибольших значений




Решение уравнении и систем уравнении используя свойства функции

Устный, письменный опросы;

оценка при выполнении практических заданий;

тестирование; контрольные работы.

• вычислять производные и первообразные элементарных функций, используя справочные материалы;

• исследовать в простейших случаях функции на монотонность, находить наибольшие и наименьшие значения функций, строить графики многочленов и простейших рациональных функций с использованием аппарата математического анализа;


• вычислять в простейших случаях площади с использованием первообразной;

ОК02- ОК 09

Нахождение производных и первообразных элементарных функций, используя справочные материалы;

Использование производной при исследовании функций, построении графиков







Решение задач на нахождение площади применения первообразной

Устный, письменный опросы;

оценка при выполнении практических заданий; тестирование; контрольные работы.

• решать рациональные, показательные и логарифмические уравнения и неравенства, простейшие иррациональные и тригонометрические уравнения, их системы;

• составлять уравнения и неравенства по условию задачи;

• использовать для приближенного решения уравнений и неравенств графический метод;

• изображать на координатной плоскости множества решений

простейших уравнений и их систем;


ОК02- ОК 09

Применение полученных знаний при решении рациональных, показательных и логарифмических уравнений и неравенств, простейших иррациональных и тригонометрических уравнений, их систем

Устный, письменный опросы;

оценка при выполнении практических заданий; тестирование; контрольные работы.

• решать простейшие комбинаторные задачи методом перебора, а также с использованием известных формул;

• вычислять в простейших случаях вероятности событий на основе подсчета числа исходов;

ОК02- ОК 09

Моделирование реальных ситуаций на языке теории вероятностей и статистики, вычислять в простейших случаях вероятности событий


Анализирование реальных числовых данных, информации статистического характера;

Осуществление практических расчетов по формулам;

Использование оценки и прикидки при практических расчетах

оценка при выполнении практических заданий;

(геометрия)

• распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями, изображениями;

• описывать взаимное расположение прямых и плоскостей в пространстве, аргументировать свои суждения об этом расположении;

• анализировать в простейших случаях взаимное расположение объектов в пространстве;

• изображать основные многогранники и круглые тела; выполнять чертежи по условиям задач;

• строить простейшие сечения куба, призмы, пирамиды;

• решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей, объемов);

• использовать при решении стереометрических задач планиметрические факты и методы;

• проводить доказательные рассуждения в ходе решения задач;

ОК02- ОК 09

Умение распознавать пространственные формы пространственных фигур, их изображений, построение их на плоскости, построение сечений пространственных фигур












Построение сечения куба, призмы, пирамиды;






Решение задач по планиметрии и стереометрии

Устный, письменный опросы;

оценка при выполнении практических заданий; тестирование; контрольные работы.








17