Муниципальное бюджетное общеобразовательное учреждение
«Средняя общеобразовательная школа №2»
г. Сергиев Посад
УТВЕРЖДАЮ:
Директор МБОУ «Средняя
общеобразовательная школа №2»
________________ Е.А. Тонеева
«____» ________________ 2020 г.
Приказ № _______ от _______ 2020 г.
Рабочая программа
по внеурочной деятельности
по теме « 35 занятий для будущих отличников»
(общеинтеллектуальное направление)
для 6 «А» класса
Составитель: Каптелина Елена Викторовна
учитель математики
первой квалификационной категории
2020 г.
Вводная часть
Программа внеурочной деятельности для 6 «А» класса соответствует требованиям федерального государственного образовательного стандарта основного общего образования и разработана на основе:
Основной образовательной программы основного общего образования МБОУ «Средняя общеобразовательная школа №2»
Учебного плана на 2020-2021 учебный год МБОУ «Средняя общеобразовательная школа №2»
УМК «36 занятий для будущих отличников 6 класс». Автор: Л.В. Мищенкова.– М.: Росткнига, 2010 г. «Рабочая тетрадь. 6 класс». Автор: Л.В. Мищенкова.– М.: Росткнига, 2010 г.
Программа внеурочной деятельности в 6 «А» классе рассчитана на 35 учебных часов, по 1 занятию в неделю.
В программе предусмотрен резерв (1 час), который планируется использовать при форс – мажорных обстоятельствах (например, актированные дни).
С целью предоставления равных возможностей всем ученикам используется дифференцированный и индивидуальный подход. Индивидуальные особенности каждого школьника учитываются при планировании занятия.
Цели курса:
повышение уровня математической культуры обучающихся, развитие логического мышления, углубление знаний, полученных на уроке, и расширение общего кругозора ребенка в процессе рассмотрения различных практических задач и вопросов;
формирование представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов; об идеях и методах математики;
развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для будущей профессиональной деятельности, а также последующего обучения в высшей школе;
овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения школьных естественнонаучных дисциплин на базовом уровне, для получения образования в областях, не требующих углубленной математической подготовки;
воспитание средствами математики культуры личности, понимание значимости математики для научно-технического прогресса, отношения к математике как к части общечеловеческой культуры через знакомство с историей развития математики.
Задачи курса:
формировать представления о множествах, операциях объединения и пересечениях множеств.
формировать навыки быстрого счета, нестандартного мышления;
владеть элементарными навыками исследовательской деятельности;
развивать наблюдательность, умение рассуждать, анализировать, доказывать, решать учебную задачу;
работать с научной и справочной литературой, с измерительными инструментами;
акцентировать практическую направленность математики как науки.
сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.
Планируемые результаты
Личностные результаты
У обучающегося формируются:
- ответственное отношение к учению, готовность и способность обучающихся к
саморазвитию и самообразованию на основе мотивации к обучению и познанию;
- формирования коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими в образовательной, учебно-исследовательской, творческой и других видах деятельности;
- умения ясно, точно, грамотно излагать свои мысли в устной и письменной речи,
понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
- первоначальные представления о математической науке как сфере человеческой деятельности, об этапах её развития, о её значимости для развития цивилизации;
- критичность мышления, умения распознавать логически некорректные высказывания, отличать гипотезу от факта;
- креативность мышления, инициативы, находчивости, активности при решении арифметических задач;
- умения контролировать процесс и результат учебной математической деятельности;
- способности к эмоциональному восприятию математических объектов, задач, решений, рассуждений.
Обучающийся получит возможность для формирования:
- готовности и способности к переходу к самообразованию на основе учебно – познавательной мотивации.
Метапредметные результаты
Регулятивные УУД
Обучающийся научится:
- способности самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
- умения осуществлять контроль по образцу и вносить необходимые коррективы;
- способности адекватно оценивать правильность или ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения.
Обучающийся получит возможность научиться:
- проектировать свою деятельность, намечать траекторию своих действий исходя из поставленной цели.
Коммуникативные УУД
Обучающийся научится:
- действовать с учетом позиции другого и уметь согласовывать свои действия;
- устанавливать и поддерживать необходимые контакты с другими людьми, владея нормами и техникой общения;
- строить понятные для партнёра высказывания, учитывающие, что партнёр знает и видит, а что нет;
- контролировать действия партнёра.
Обучающийся получит возможность:
- определять цели коммуникации, оценивать ситуацию, учитывать намерения и способы коммуникации партнёра, выбирать адекватные стратегии коммуникации.
Познавательные УУД
Обучающийся научится:
- устанавливать причинно-следственные связи;
- строить логические рассуждения, умозаключения (индуктивные, дедуктивные и по аналогии) и выводы;
- создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения учебных и познавательных задач;
- видеть математическую задачу в других дисциплинах, в окружающей жизни;
- находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме;
Обучающийся получит возможность научиться:
- находить практическое применение таким понятиям как анализ, синтез, обобщение.
Предметные результаты
В результате внеурочной деятельности обучающийся научится:
- работать с математическим текстом (структурирование, извлечение необходимой информации), точно и грамотно выражать свои мысли в устной и письменной речи, применяя математическую терминологию и символику, использовать различные языки математики (словесный, символический, графический), развития способности обосновывать суждения, проводить классификацию;
- учащиеся будут знать операции объединения и пересечения множеств;
- научатся быстро считать;
- приобретут умение работать со справочной литературой, с измерительными инструментами.
- пользоваться изученными математическими формулами;
- применять изученные понятия, результаты и методы при решении задач из различных разделов курса, в том числе задач, не сводящихся к непосредственному применению известных алгоритмов.
Обучающийся получит возможность
решать следующие жизненно практические задачи:
- аргументировать и отстаивать свою точку зрения;
- самостоятельно действовать в ситуации неопределённости при решении актуальных для них проблем;
- пользоваться предметным указателем и справочным материалом;
- самостоятельно приобретать и применять знания в различных ситуациях, работать в группах.
Содержание предметного курса
В курсе внеурочной деятельности 6 класса можно выделить следующие основные содержательные линии: арифметика, элементы алгебры, вероятность и статистика, наглядная геометрия. Наряду с этим в содержание включены две дополнительные методологические темы: множества и математика в историческом развитии, что связано с реализацией целей общеинтеллектуального и общекультурного развития учащихся. Содержание каждой из этих тем разворачивается в содержательно-методическую линию, пронизывающую все основные содержательные линии. При этом первая линия – «Множества» - служит цели овладения учащимися некоторыми элементами универсального математического языка, вторая – «Математика в историческом развитии» - способствует созданию общекультурного, гуманитарного фона изучения курса.
Формы проведения занятий
Календарно-тематическое планирование
№ урока | Наименование тем | Количество часов, отведенных на изучение темы | Плановые сроки прохождения темы | Фактические сроки (и/или коррекция) |
1. | Множество и его элементы. | 1 | | |
2. | Конечное множество. Мощность множества. | 1 | | |
3. | Подмножество. | 1 | | |
4. | Пересечение и объединение множеств. | 1 | | |
5. | Библиографическая миниатюра. Диаграммы Эйлера. | 1 | | |
6. | Переместительное и сочетательное свойства действий над множествами. | 1 | | |
7. | Переместительное и сочетательное свойства действий над множествами. | 1 | | |
8. | Простые и сложные выказывания. | 1 | | |
9. | Истинность простых высказываний. | 1 | | |
10. | Перевод единиц измерения из одной системы мер в другую. Решение олимпиадных задач. | 1 | | |
11. | Равномерное движение по прямой. | 1 | | |
12. | Движение двух тел. | 1 | | |
13. | Движение тел по замкнутому контуру. | 1 | | |
14. | Движение тел по воде. | 1 | | |
15. | Простые и составные числа. | 1 | | |
16. | Библиографическая миниатюра. Числа Мерсенна. | 1 | | |
17. | Совершенные числа. | 1 | | |
18. | Каноническое разложение числа. | 1 | | |
19. | Каноническое разложение числа. | 1 | | |
20. | Новый знак деления. Решение олимпиадных задач. | 1 | | |
21. | Свойства делимости. | 1 | | |
22. | Общие делители и кратные. Свойства остатков. | 1 | | |
23. | Свойства остатков. | 1 | | |
24. | Библиографическая миниатюра. Алгоритм Евклида. | 1 | | |
25. | Библиографическая миниатюра.Использование принципа Дирихле. | 1 | | |
26. | Некоторые приемы устных вычислений. | 1 | | |
27. | Золотое сечение. | 1 | | |
28. | Золотое сечение (защита проектов). | 1 | | |
29. | Математическая викторина. | 1 | | |
30. | Старинный способ решения задач на смешение веществ. | 1 | | |
31. | Пифагорейский союз. | 1 | | |
32. | Софизмы. Решение олимпиадных задач. | 1 | | |
33. | Числовые ребусы (криптограммы). | 1 | | |
34. | Числовые ребусы (криптограммы). | 1 | | |
35. | Резерв. | 1 | | |
36. | Итого: | 35 | | |
СОГЛАСОВАНО на заседании ШМО учителей_______________________ Протокол № _____ от ___________ | СОГЛАСОВАНО зам. директора по УВР _________________________ __________ (ФИО зам. директора) |