СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Сборник заданий - прототип 10 задание (базовый)

Категория: Математика

Нажмите, чтобы узнать подробности

Сборник заданий для 10 класса тема "Теория вероятности"

Просмотр содержимого документа
«Сборник заданий - прототип 10 задание (базовый)»

Теория вероятности 10 задание – ЕГЭ базовый

  1. На эк­за­мен вы­не­се­но 60 вопросов, Ан­дрей не вы­учил 3 из них. Най­ди­те ве­ро­ят­ность того, что ему по­па­дет­ся вы­учен­ный вопрос.

  2. В фирме такси в данный момент свободно 20 машин: 10 черных, 2 желтых и 8 зеленых. По вызову выехала одна из машин, случайно оказавшаяся ближе всего к заказчице. Найдите вероятность того, что к ней приедет зеленое такси.

  3. На тарелке 16 пирожков: 7 с рыбой, 5 с вареньем и 4 с вишней. Юля наугад выбирает один пирожок. Найдите вероятность того, что он окажется с вишней.

  4. В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орел выпадет ровно один раз.

  5. В чемпионате по гимнастике участвуют 20 спортсменок: 8 из России, 7 из США, остальные — из Китая. Порядок, в котором выступают гимнастки, определяется жребием. Найдите вероятность того, что спортсменка, выступающая первой, окажется из Китая.

  6. В среднем из 1000 садовых насосов, поступивших в продажу, 5 подтекают. Найдите вероятность того, что один случайно выбранный для контроля насос не подтекает.

  7. Фабрика вы­пус­ка­ет сумки. В сред­нем на 100 ка­че­ствен­ных сумок при­хо­дит­ся во­семь сумок со скры­ты­ми дефектами. Най­ди­те ве­ро­ят­ность того, что куп­лен­ная сумка ока­жет­ся качественной. Ре­зуль­тат округ­ли­те до сотых.

  8. Научная кон­фе­рен­ция проводится в 5 дней. Всего за­пла­ни­ро­ва­но 75 до­кла­дов — пер­вые три дня по 17 докладов, осталь­ные распределены по­ров­ну между чет­вер­тым и пятым днями. По­ря­док докладов опре­де­ля­ет­ся жеребьёвкой. Ка­ко­ва вероятность, что до­клад профессора М. ока­жет­ся запланированным на по­след­ний день конференции?

  9. На се­ми­нар при­е­ха­ли 3 уче­ных из Норвегии, 3 из Рос­сии и 4 из Испании. По­ря­док до­кла­дов опре­де­ля­ет­ся жеребьёвкой. Най­ди­те ве­ро­ят­ность того, что вось­мым ока­жет­ся до­клад уче­но­го из России.

  10. Перед началом первого тура чемпионата по бадминтону участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 26 бадминтонистов, среди которых 10 участников из России, в том числе Руслан Орлов. Найдите вероятность того, что в первом туре Руслан Орлов будет играть с каким-либо бадминтонистом из России?

  11. В сборнике билетов по биологии всего 55 билетов, в 11 из них встречается вопрос по ботанике. Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику достанется вопрос по ботанике.

  12. Вася, Петя, Коля и Лёша бросили жребий — кому начинать игру. Найдите вероятность того, что начинать игру должен будет Петя.

  13. В чемпионате мира участвуют 16 команд. С помощью жребия их нужно разделить на четыре группы по четыре команды в каждой. В ящике вперемешку лежат карточки с номерами групп:

 

 

1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4.

 

Капитаны команд тянут по одной карточке. Какова вероятность того, что команда России окажется во второй группе?

  1. Какова вероятность того, что случайно выбранное натуральное число от 10 до 19 делится на три?

  2. Вероятность того, что стек­ло мо­биль­но­го те­ле­фо­на разобьётся при па­де­нии на твёрдую поверхность, равна 0,85. Най­ди­те ве­ро­ят­ность того, что при па­де­нии на твёрдую по­верх­ность стек­ло мо­биль­но­го те­ле­фо­на не разобьётся

  3. Помещение осве­ща­ет­ся фонарём с двумя лампами. Ве­ро­ят­ность перегорания одной лампы в те­че­ние года равна 0,15. Най­ди­те вероятность того, что в те­че­ние года обе лампы перегорят.

  4. На олим­пиа­де по химии участ­ни­ков рас­са­жи­ва­ют по трём аудиториям. В пер­вых двух ауди­то­ри­ях са­жа­ют по 140 человек, остав­ших­ся про­во­дят в за­пас­ную ауди­то­рию в дру­гом корпусе. При подсчёте выяснилось, что всего было 400 участников. Най­ди­те ве­ро­ят­ность того, что слу­чай­но вы­бран­ный участ­ник писал олим­пи­а­ду в за­пас­ной аудитории.

Задачи по вероятности

  1.  Задание 10 № 319355

  2. Если гроссмейстер А. играет белыми, то он выигрывает у гроссмейстера Б. с вероятностью 0,52. Если А. играет черными, то А. выигрывает у Б. с вероятностью 0,3. Гроссмейстеры А. и Б. играют две партии, причем во второй партии меняют цвет фигур. Найдите вероятность того, что А. выиграет оба раза.

  3. 2. Задание 10 № 320197

  4. Ве­ро­ят­ность того, что в слу­чай­ный мо­мент вре­ме­ни тем­пе­ра­ту­ра тела здо­ро­во­го че­ло­ве­ка ока­жет­ся ниже чем 36,8 °С, равна 0,81. Най­ди­те ве­ро­ят­ность того, что в слу­чай­ный мо­мент вре­ме­ни у здо­ро­во­го че­ло­ве­ка тем­пе­ра­ту­ра ока­жет­ся 36,8 °С или выше.

  5. 3. Задание 10 № 506453

  6. Игральную кость с 6 гра­ня­ми бро­са­ют дважды. Най­ди­те ве­ро­ят­ность того, что хотя бы раз вы­па­ло число, боль­шее 3.

  7. 4. Задание 10 № 320173

  8. Биатлонист пять раз стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,8. Найдите вероятность того, что биатлонист первые три раза попал в мишени, а последние два промахнулся. Результат округлите до сотых.

  9. 5. Задание 10 № 319353

  10. Две фабрики выпускают одинаковые стекла для автомобильных фар. Первая фабрика выпускает 45% этих стекол, вторая — 55%. Первая фабрика выпускает 3% бракованных стекол, а вторая — 1%. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным.

  11. 6. Задание 10 № 320171

  12. На экзамене по геометрии школьнику достаётся один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос на тему «Вписанная окружность», равна 0,2. Вероятность того, что это вопрос на тему «Параллелограмм», равна 0,15. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

  13. 7. Задание 10 № 320172

  14. В тор­го­вом центре два оди­на­ко­вых автомата про­да­ют кофе. Ве­ро­ят­ность того, что к концу дня в ав­то­ма­те закончится кофе, равна 0,3. Ве­ро­ят­ность того, что кофе за­кон­чит­ся в обоих автоматах, равна 0,12. Най­ди­те вероятность того, что к концу дня кофе оста­нет­ся в обоих автоматах.

  15. 8. Задание 10 № 320174

  16. В магазине стоят два платёжных автомата. Каждый из них может быть неисправен с вероятностью 0,05 независимо от другого автомата. Найдите вероятность того, что хотя бы один автомат исправен.

  17. 9. Задание 10 № 320175

  18. Помещение осве­ща­ет­ся фонарём с двумя лампами. Ве­ро­ят­ность перегорания лампы в те­че­ние года равна 0,3. Най­ди­те вероятность того, что в те­че­ние года хотя бы одна лампа не перегорит.

  19. 10. Задание 10 № 320176

  20. Вероятность того, что новый элек­три­че­ский чай­ник про­слу­жит боль­ше года, равна 0,97. Ве­ро­ят­ность того, что он про­слу­жит боль­ше двух лет, равна 0,89. Най­ди­те ве­ро­ят­ность того, что он про­слу­жит мень­ше двух лет, но боль­ше года.

  21. 11. Задание 10 № 320180

  22. Ковбой Джон попадает в муху на стене с вероятностью 0,9, если стреляет из пристрелянного револьвера. Если Джон стреляет из непристрелянного револьвера, то он попадает в муху с вероятностью 0,2. На столе лежит 10 револьверов, из них только 4 пристрелянные. Ковбой Джон видит на стене муху, наудачу хватает первый попавшийся револьвер и стреляет в муху. Найдите вероятность того, что Джон промахнётся.

  23. 12. Задание 10 № 320177

  24. Агрофирма закупает куриные яйца в двух домашних хозяйствах. 40% яиц из первого хозяйства — яйца высшей категории, а из второго хозяйства — 20% яиц высшей категории. Всего высшую категорию получает 35% яиц. Найдите вероятность того, что яйцо, купленное у этой агрофирмы, окажется из первого хозяйства.

  25. 13. Задание 10 № 320187

  26. При ар­тил­ле­рий­ской стрельбе ав­то­ма­ти­че­ская система де­ла­ет выстрел по цели. Если цель не уничтожена, то си­сте­ма делает по­втор­ный выстрел. Вы­стре­лы повторяются до тех пор, пока цель не будет уничтожена. Ве­ро­ят­ность уничтожения не­ко­то­рой цели при пер­вом выстреле равна 0,4, а при каж­дом последующем — 0,6. Сколь­ко выстрелов по­тре­бу­ет­ся для того, чтобы ве­ро­ят­ность уничтожения цели была не менее 0,98?

  27.  

  28. В ответе укажите наименьшее необходимое количество выстрелов.

  29. 14. Задание 10 № 320188

  30. Чтобы пройти в следующий круг соревнований, футбольной команде нужно набрать хотя бы 4 очка в двух играх. Если команда выигрывает, она получает 3 очка, в случае ничьей — 1 очко, если проигрывает — 0 очков. Найдите вероятность того, что команде удастся выйти в следующий круг соревнований. Считайте, что в каждой игре вероятности выигрыша и проигрыша одинаковы и равны 0,4.

  31. 15. Задание 10 № 320196

  32. При изготовлении подшипников диаметром 67 мм вероятность того, что диаметр будет отличаться от заданного не больше, чем на 0,01 мм, равна 0,965. Найдите вероятность того, что случайный подшипник будет иметь диаметр меньше чем 66,99 мм или больше чем 67,01 мм.

  33. 16. Задание 10 № 320198

  34. Вероятность того, что на тесте по биологии учащийся О. верно решит больше 11 задач, равна 0,67. Вероятность того, что О. верно решит больше 10 задач, равна 0,74. Найдите вероятность того, что О. верно решит ровно 11 задач.

  35. 17. Задание 10 № 320199

  36. Чтобы по­сту­пить в ин­сти­тут на спе­ци­аль­ность «Лингвистика», аби­ту­ри­ент должен на­брать на ЕГЭ не менее 70 баллов по каж­до­му из трёх предметов — математика, рус­ский язык и ино­стран­ный язык. Чтобы по­сту­пить на спе­ци­аль­ность «Коммерция», нужно на­брать не менее 70 бал­лов по каж­до­му из трёх предметов — математика, рус­ский язык и обществознание.

  37. Вероятность того, что аби­ту­ри­ент З. по­лу­чит не менее 70 бал­лов по математике, равна 0,6, по рус­ско­му языку — 0,8, по ино­стран­но­му языку — 0,7 и по обществознанию — 0,5.

  38. Найдите ве­ро­ят­ность того, что З. смо­жет поступить хотя бы на одну из двух упо­мя­ну­тых специальностей.

  39. 18. Задание 10 № 320200

  40. На фаб­ри­ке керамической по­су­ды 10% произведённых та­ре­лок имеют дефект. При кон­тро­ле качества про­дук­ции выявляется 80% де­фект­ных тарелок. Осталь­ные тарелки по­сту­па­ют в продажу. Най­ди­те вероятность того, что слу­чай­но выбранная при по­куп­ке тарелка не имеет дефектов. Ре­зуль­тат округлите до сотых.

  41. 19. Задание 10 № 320201

  42. В магазине три продавца. Каждый из них занят с клиентом с вероятностью 0,3. Найдите вероятность того, что в случайный момент времени все три продавца заняты одновременно (считайте, что клиенты заходят независимо друг от друга).

  43. 20. Задание 10 № 320202

  44. По отзывам покупателей Иван Иванович оценил надёжность двух интернет-магазинов. Вероятность того, что нужный товар доставят из магазина А, равна 0,8. Вероятность того, что этот товар доставят из магазина Б, равна 0,9. Иван Иванович заказал товар сразу в обоих магазинах. Считая, что интернет-магазины работают независимо друг от друга, найдите вероятность того, что ни один магазин не доставит товар.

  45. 21. Задание 10 № 320203

  46. Из рай­он­но­го центра в де­рев­ню ежедневно ходит автобус. Ве­ро­ят­ность того, что в по­не­дель­ник в ав­то­бу­се окажется мень­ше 20 пассажиров, равна 0,94. Ве­ро­я­тность того, что ока­жет­ся меньше 15 пассажиров, равна 0,56. Най­ди­те вероятность того, что число пас­са­жи­ров будет от 15 до 19.

  47. 22. Задание 10 № 320205

  48. Перед началом волейбольного матча капитаны команд тянут честный жребий, чтобы определить, какая из команд начнёт игру с мячом. Команда «Статор» по очереди играет с командами «Ротор», «Мотор» и «Стартер». Найдите вероятность того, что «Статор» будет начинать только первую и последнюю игры.

  49. 23. Задание 10 № 320206

  50. В Вол­шеб­ной стра­не бы­ва­ет два типа погоды: хо­ро­шая и отличная, причём погода, уста­но­вив­шись утром, дер­жит­ся не­из­мен­ной весь день. Известно, что с ве­ро­ят­но­стью 0,8 по­го­да зав­тра будет такой же, как и сегодня. Се­год­ня 3 июля, по­го­да в Вол­шеб­ной стра­не хорошая. Най­ди­те ве­ро­ят­ность того, что 6 июля в Вол­шеб­ной стра­не будет от­лич­ная погода.

  51. 24. Задание 10 № 320207

  52. Всем пациентам с подозрением на гепатит делают анализ крови. Если анализ выявляет гепатит, то результат анализа называется положительным. У больных гепатитом пациентов анализ даёт положительный результат с вероятностью 0,9. Если пациент не болен гепатитом, то анализ может дать ложный положительный результат с вероятностью 0,01. Известно, что 5% пациентов, поступающих с подозрением на гепатит, действительно больны гепатитом. Найдите вероятность того, что результат анализа у пациента, поступившего в клинику с подозрением на гепатит, будет положительным.

  53. 25. Задание 10 № 320210

  54. Вероятность того, что батарейка бракованная, равна 0,06. Покупатель в магазине выбирает случайную упаковку, в которой две таких батарейки. Найдите вероятность того, что обе батарейки окажутся исправными.

  55. 26. Задание 10 № 320211

  56. Автоматическая линия изготавливает батарейки. Вероятность того, что готовая батарейка неисправна, равна 0,02. Перед упаковкой каждая батарейка проходит систему контроля. Вероятность того, что система забракует неисправную батарейку, равна 0,99. Вероятность того, что система по ошибке забракует исправную батарейку, равна 0,01. Найдите вероятность того, что случайно выбранная батарейка будет забракована системой контроля.

  57. 27. Задание 10 № 320212

  58. На рисунке изображён лабиринт. Паук заползает в лабиринт в точке «Вход». Развернуться и ползти назад паук не может, поэтому на каждом разветвлении паук выбирает один из путей, по которому ещё не полз. Считая, что выбор дальнейшего пути чисто случайный, определите, с какой вероятностью паук придёт к выходу .

  59. 28. Задание 10 № 500998

  60. В кармане у Пети было 2 монеты по 5 рублей и 4 монеты по 10 рублей. Петя, не глядя, переложил какие-то 3 монеты в другой карман. Найдите вероятность того, что пятирублевые монеты лежат теперь в разных карманах.

  61. 29. Задание 10 № 501061

  62. Стрелок стреляет по мишени один раз. В случае промаха стрелок делает второй выстрел по той же мишени. Вероятность попасть в мишень при одном выстреле равна 0,7. Найдите вероятность того, что мишень будет поражена (либо первым, либо вторым выстрелом).

  63. 30. Задание 10 № 511614

  64. 11 апреля на запись в первый класс независимо друг от друга пришли два будущих первоклассника. Считая, что приходы мальчика и девочки равновероятны, найдите вероятность того, что оба ребёнка оказались девочками.







































Решение задача теории вероятности

  1.  Задание 10 № 319355

  2. Если гроссмейстер А. играет белыми, то он выигрывает у гроссмейстера Б. с вероятностью 0,52. Если А. играет черными, то А. выигрывает у Б. с вероятностью 0,3. Гроссмейстеры А. и Б. играют две партии, причем во второй партии меняют цвет фигур. Найдите вероятность того, что А. выиграет оба раза.

Решение: 0,52 · 0,3 = 0,156.

  1. 2. Задание 10 № 320197

  2. Ве­ро­ят­ность того, что в слу­чай­ный мо­мент вре­ме­ни тем­пе­ра­ту­ра тела здо­ро­во­го че­ло­ве­ка ока­жет­ся ниже чем 36,8 °С, равна 0,81. Най­ди­те ве­ро­ят­ность того, что в слу­чай­ный мо­мент вре­ме­ни у здо­ро­во­го че­ло­ве­ка тем­пе­ра­ту­ра ока­жет­ся 36,8 °С или выше.

Решение: 1 − 0,81 = 0,19.

  1. 3. Задание 10 № 506453

  2. Игральную кость с 6 гра­ня­ми бро­са­ют дважды. Най­ди­те ве­ро­ят­ность того, что хотя бы раз вы­па­ло число, боль­шее 3.

Решение: Воз­мож­ность по­яв­ле­ния числа в пер­вом и вто­ром брос­ке не за­ви­сят друг от друга. Ве­ро­ят­ность того, что на иг­раль­ной кости вы­па­дет число меньше, либо рав­ное трёх: 1 − 0,5 =  0,5. По­это­му вероятность того, что ни разу оба раза число мень­ше либо рав­ное трём равна 0,5 · 0,5 = 0,25. Следовательно, ве­ро­ят­ность того, что хотя бы раз вы­па­дет число боль­шее трёх равна 1 − 0,25 = 0,75.

  1. 4. Задание 10 № 320173

  2. Биатлонист пять раз стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,8. Найдите вероятность того, что биатлонист первые три раза попал в мишени, а последние два промахнулся. Результат округлите до сотых.

Решение: Поскольку биатлонист попадает в мишени с вероятностью 0,8, он промахивается с вероятностью 1 − 0,8 = 0,2. Cобытия попасть или промахнуться при каждом выстреле независимы, вероятность произведения независимых событий равна произведению их вероятностей. Тем самым, вероятность события «попал, попал, попал, промахнулся, промахнулся» равна

 



  1. 5. Задание 10 № 319353

  2. Две фабрики выпускают одинаковые стекла для автомобильных фар. Первая фабрика выпускает 45% этих стекол, вторая — 55%. Первая фабрика выпускает 3% бракованных стекол, а вторая — 1%. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным.

Решение: Вероятность того, что стекло куплено на первой фабрике и оно бракованное: 0,45 · 0,03 = 0,0135.

 

Вероятность того, что стекло куплено на второй фабрике и оно бракованное: 0,55 · 0,01 = 0,0055.

 

Поэтому по формуле полной вероятности вероятность того, что случайно купленное в магазине стекло окажется бракованным равна 0,0135 + 0,0055 = 0,019.


  1. 6. Задание 10 № 320171

  2. На экзамене по геометрии школьнику достаётся один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос на тему «Вписанная окружность», равна 0,2. Вероятность того, что это вопрос на тему «Параллелограмм», равна 0,15. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.


  1. 7. Задание 10 № 320172

  2. В тор­го­вом центре два оди­на­ко­вых автомата про­да­ют кофе. Ве­ро­ят­ность того, что к концу дня в ав­то­ма­те закончится кофе, равна 0,3. Ве­ро­ят­ность того, что кофе за­кон­чит­ся в обоих автоматах, равна 0,12. Най­ди­те вероятность того, что к концу дня кофе оста­нет­ся в обоих автоматах.

Решение Рассмотрим события

 

А = кофе за­кон­чит­ся в пер­вом автомате,

В = кофе за­кон­чит­ся во вто­ром автомате.

 

Тогда

A·B = кофе за­кон­чит­ся в обоих автоматах,

A + B = кофе за­кон­чит­ся хотя бы в одном автомате.

 

По усло­вию P(A) = P(B) = 0,3; P(A·B) = 0,12.

 

События A и B совместные, ве­ро­ят­ность суммы двух сов­мест­ных событий равна сумме ве­ро­ят­но­стей этих событий, умень­шен­ной на ве­ро­ят­ность их произведения:

 

P(A + B) = P(A) + P(B) − P(A·B) = 0,3 + 0,3 − 0,12 = 0,48.

 

Следовательно, ве­ро­ят­ность противоположного события, со­сто­я­ще­го в том, что кофе оста­нет­ся в обоих автоматах, равна 1 − 0,48 = 0,52.

 

Ответ: 0,52.


  1. 8. Задание 10 № 320174

  2. В магазине стоят два платёжных автомата. Каждый из них может быть неисправен с вероятностью 0,05 независимо от другого автомата. Найдите вероятность того, что хотя бы один автомат исправен.

Решение: Найдем вероятность того, что неисправны оба автомата. Эти события независимые, вероятность их произведения равна произведению вероятностей этих событий: 0,05 · 0,05 = 0,0025.

 

Событие, состоящее в том, что исправен хотя бы один автомат, противоположное. Следовательно, его вероятность равна 1 − 0,0025 = 0,9975.

Ответ: 0,9975.


  1. 9. Задание 10 № 320175

  2. Помещение осве­ща­ет­ся фонарём с двумя лампами. Ве­ро­ят­ность перегорания лампы в те­че­ние года равна 0,3. Най­ди­те вероятность того, что в те­че­ние года хотя бы одна лампа не перегорит.

  3. 10. Задание 10 № 320176

  4. Вероятность того, что новый элек­три­че­ский чай­ник про­слу­жит боль­ше года, равна 0,97. Ве­ро­ят­ность того, что он про­слу­жит боль­ше двух лет, равна 0,89. Най­ди­те ве­ро­ят­ность того, что он про­слу­жит мень­ше двух лет, но боль­ше года.

Решение: P(A) = 0,97 − 0,89 = 0,08.

 

  1. 11. Задание 10 № 320180

  2. Ковбой Джон попадает в муху на стене с вероятностью 0,9, если стреляет из пристрелянного револьвера. Если Джон стреляет из непристрелянного револьвера, то он попадает в муху с вероятностью 0,2. На столе лежит 10 револьверов, из них только 4 пристрелянные. Ковбой Джон видит на стене муху, наудачу хватает первый попавшийся револьвер и стреляет в муху. Найдите вероятность того, что Джон промахнётся.

Решение: Джон промахнется, если схватит пристрелянный револьвер и промахнется из него, или если схватит непристрелянный револьвер и промахнется из него. По формуле условной вероятности, вероятности этих событий равны соответственно 0,4·(1 − 0,9) = 0,04 и 0,6·(1 − 0,2) = 0,48. Эти события несовместны, вероятность их суммы равна сумме вероятностей этих событий: 0,04 + 0,48 = 0,52.

 

Ответ: 0,52.


  1. 12. Задание 10 № 320177

  2. Агрофирма закупает куриные яйца в двух домашних хозяйствах. 40% яиц из первого хозяйства — яйца высшей категории, а из второго хозяйства — 20% яиц высшей категории. Всего высшую категорию получает 35% яиц. Найдите вероятность того, что яйцо, купленное у этой агрофирмы, окажется из первого хозяйства.

Решение:







  1. 15. Задание 10 № 320196

  2. При изготовлении подшипников диаметром 67 мм вероятность того, что диаметр будет отличаться от заданного не больше, чем на 0,01 мм, равна 0,965. Найдите вероятность того, что случайный подшипник будет иметь диаметр меньше чем 66,99 мм или больше чем 67,01 мм.

Решение: По условию, диаметр подшипника будет лежать в пределах от 66,99 до 67,01 мм с вероятностью 0,965. Поэтому искомая вероятность противоположного события равна 1 − 0,965 = 0,035.

 

Ответ: 0,035.


  1. 16. Задание 10 № 320198

  2. Вероятность того, что на тесте по биологии учащийся О. верно решит больше 11 задач, равна 0,67. Вероятность того, что О. верно решит больше 10 задач, равна 0,74. Найдите вероятность того, что О. верно решит ровно 11 задач.


  1. 17. Задание 10 № 320199

  2. Чтобы по­сту­пить в ин­сти­тут на спе­ци­аль­ность «Лингвистика», аби­ту­ри­ент должен на­брать на ЕГЭ не менее 70 баллов по каж­до­му из трёх предметов — математика, рус­ский язык и ино­стран­ный язык. Чтобы по­сту­пить на спе­ци­аль­ность «Коммерция», нужно на­брать не менее 70 бал­лов по каж­до­му из трёх предметов — математика, рус­ский язык и обществознание.

  3. Вероятность того, что аби­ту­ри­ент З. по­лу­чит не менее 70 бал­лов по математике, равна 0,6, по рус­ско­му языку — 0,8, по ино­стран­но­му языку — 0,7 и по обществознанию — 0,5.

  4. Найдите ве­ро­ят­ность того, что З. смо­жет поступить хотя бы на одну из двух упо­мя­ну­тых специальностей.

  5. 18. Задание 10 № 320200

  6. На фаб­ри­ке керамической по­су­ды 10% произведённых та­ре­лок имеют дефект. При кон­тро­ле качества про­дук­ции выявляется 80% де­фект­ных тарелок. Осталь­ные тарелки по­сту­па­ют в продажу. Най­ди­те вероятность того, что слу­чай­но выбранная при по­куп­ке тарелка не имеет дефектов. Ре­зуль­тат округлите до сотых.

  7. 19. Задание 10 № 320201

  8. В магазине три продавца. Каждый из них занят с клиентом с вероятностью 0,3. Найдите вероятность того, что в случайный момент времени все три продавца заняты одновременно (считайте, что клиенты заходят независимо друг от друга).

  9. 20. Задание 10 № 320202

  10. По отзывам покупателей Иван Иванович оценил надёжность двух интернет-магазинов. Вероятность того, что нужный товар доставят из магазина А, равна 0,8. Вероятность того, что этот товар доставят из магазина Б, равна 0,9. Иван Иванович заказал товар сразу в обоих магазинах. Считая, что интернет-магазины работают независимо друг от друга, найдите вероятность того, что ни один магазин не доставит товар.

Решение: Вероятность того, что первый магазин не доставит товар равна 1 − 0,9 = 0,1. Вероятность того, что второй магазин не доставит товар равна 1 − 0,8 = 0,2. Поскольку эти события независимы, вероятность их произведения (оба магазина не доставят товар) равна произведению вероятностей этих событий: 0,1 · 0,2 = 0,02.

  1. 21. Задание 10 № 320203

  2. Из рай­он­но­го центра в де­рев­ню ежедневно ходит автобус. Ве­ро­ят­ность того, что в по­не­дель­ник в ав­то­бу­се окажется мень­ше 20 пассажиров, равна 0,94. Ве­ро­я­тность того, что ока­жет­ся меньше 15 пассажиров, равна 0,56. Най­ди­те вероятность того, что число пас­са­жи­ров будет от 15 до 19.

  3. 22. Задание 10 № 320205

  4. Перед началом волейбольного матча капитаны команд тянут честный жребий, чтобы определить, какая из команд начнёт игру с мячом. Команда «Статор» по очереди играет с командами «Ротор», «Мотор» и «Стартер». Найдите вероятность того, что «Статор» будет начинать только первую и последнюю игры.

Решение: ребуется найти вероятность произведения трех событий: «Статор» начинает первую игру, не начинает вторую игру, начинает третью игру. Вероятность произведения независимых событий равна произведению вероятностей этих событий. Вероятность каждого из них равна 0,5, откуда находим: 0,5·0,5·0,5 = 0,125.

 

  1. 23. Задание 10 № 320206

  2. В Вол­шеб­ной стра­не бы­ва­ет два типа погоды: хо­ро­шая и отличная, причём погода, уста­но­вив­шись утром, дер­жит­ся не­из­мен­ной весь день. Известно, что с ве­ро­ят­но­стью 0,8 по­го­да зав­тра будет такой же, как и сегодня. Се­год­ня 3 июля, по­го­да в Вол­шеб­ной стра­не хорошая. Най­ди­те ве­ро­ят­ность того, что 6 июля в Вол­шеб­ной стра­не будет от­лич­ная погода.

Решение: Для по­го­ды на 4, 5 и 6 июля есть 4 варианта: ХХО, ХОО, ОХО, ООО (здесь Х — хорошая, О — от­лич­ная погода). Най­дем ве­ро­ят­но­сти на­ступ­ле­ния такой погоды:

 

  1. P(XXO) = 0,8·0,8·0,2 = 0,128;

  2. P(XOO) = 0,8·0,2·0,8 = 0,128;

  3. P(OXO) = 0,2·0,2·0,2 = 0,008;

  4. P(OOO) = 0,2·0,8·0,8 = 0,128.

  5.  

Указанные со­бы­тия несовместные, ве­ро­ят­ность их суммы равна сумме ве­ро­ят­но­стей этих событий:

 

  1. P(ХХО) + P(ХОО) + P(ОХО) + P(ООО) = 0,128 + 0,128 + 0,008 + 0,128 = 0,392.




  1. 24. Задание 10 № 320207

  2. Всем пациентам с подозрением на гепатит делают анализ крови. Если анализ выявляет гепатит, то результат анализа называется положительным. У больных гепатитом пациентов анализ даёт положительный результат с вероятностью 0,9. Если пациент не болен гепатитом, то анализ может дать ложный положительный результат с вероятностью 0,01. Известно, что 5% пациентов, поступающих с подозрением на гепатит, действительно больны гепатитом. Найдите вероятность того, что результат анализа у пациента, поступившего в клинику с подозрением на гепатит, будет положительным.

  3. 25. Задание 10 № 320210

  4. Вероятность того, что батарейка бракованная, равна 0,06. Покупатель в магазине выбирает случайную упаковку, в которой две таких батарейки. Найдите вероятность того, что обе батарейки окажутся исправными.

  5. 26. Задание 10 № 320211

  6. Автоматическая линия изготавливает батарейки. Вероятность того, что готовая батарейка неисправна, равна 0,02. Перед упаковкой каждая батарейка проходит систему контроля. Вероятность того, что система забракует неисправную батарейку, равна 0,99. Вероятность того, что система по ошибке забракует исправную батарейку, равна 0,01. Найдите вероятность того, что случайно выбранная батарейка будет забракована системой контроля.

  7. 27. Задание 10 № 320212

  8. На рисунке изображён лабиринт. Паук заползает в лабиринт в точке «Вход». Развернуться и ползти назад паук не может, поэтому на каждом разветвлении паук выбирает один из путей, по которому ещё не полз. Считая, что выбор дальнейшего пути чисто случайный, определите, с какой вероятностью паук придёт к выходу .

  9. 28. Задание 10 № 500998

  10. В кармане у Пети было 2 монеты по 5 рублей и 4 монеты по 10 рублей. Петя, не глядя, переложил какие-то 3 монеты в другой карман. Найдите вероятность того, что пятирублевые монеты лежат теперь в разных карманах.

  11. 29. Задание 10 № 501061

  12. Стрелок стреляет по мишени один раз. В случае промаха стрелок делает второй выстрел по той же мишени. Вероятность попасть в мишень при одном выстреле равна 0,7. Найдите вероятность того, что мишень будет поражена (либо первым, либо вторым выстрелом).

  13. 30. Задание 10 № 511614

  14. 11 апреля на запись в первый класс независимо друг от друга пришли два будущих первоклассника. Считая, что приходы мальчика и девочки равновероятны, найдите вероятность того, что оба ребёнка оказались девочками.

Решение: Вероятность того, что придет мальчик, равна 0,5. Вероятность того, что придет девочка, равна 0,5. Вероятность произведения независимых событий (придут обе девочки) равна произведению вероятностей этих событий: 0,5·0,5 = 0,25.