СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Строение, излучение и эволюция Солнца и звезд

Категория: Физика

Нажмите, чтобы узнать подробности

презентация к уроку "Строение, излучение и эволюция Солнца и звезд"

Просмотр содержимого документа
«Строение, излучение и эволюция Солнца и звезд»

Строение, излучения  и эволюция Солнца и звёзд Строение и эволюция вселенной

Строение, излучения и эволюция Солнца и звёзд

Строение и эволюция вселенной

Солнце занимает исключительное положение в жизни человека. Оно обеспечивает нас светом, теплом, является источником всех видов энергии, используемых людьми. Солнце влияет на магнитное поле и верхние слои атмосферы Земли, вызывая магнитные бури, ионизацию и циркуляцию атмосферы. Солнечная «погода» влияет на климат, биосферу и земную жизнь в целом. Значение Солнца человек осознал еще в древности.

Солнце занимает исключительное положение в жизни человека. Оно обеспечивает нас светом, теплом, является источником всех видов энергии, используемых людьми. Солнце влияет на магнитное поле и верхние слои атмосферы Земли, вызывая магнитные бури, ионизацию и циркуляцию атмосферы. Солнечная «погода» влияет на климат, биосферу и земную жизнь в целом. Значение Солнца человек осознал еще в древности.

Солнце — центральное тело Солнечной системы, типичная звезда, представляющая собой раскаленный плазменный шар. Солнце — одна из 100 млрд звезд нашей Галактики. Детально изучая физическую природу Солнца, мы получаем важнейшие сведения о природе остальных звезд. Свет от него доходит до Земли за 8 1/3 мин.

Солнце — центральное тело Солнечной системы, типичная звезда, представляющая собой раскаленный плазменный шар.

Солнце — одна из 100 млрд звезд нашей Галактики. Детально изучая физическую природу Солнца, мы получаем важнейшие сведения о природе остальных звезд.

Свет от него доходит до Земли за 8 1/3 мин.

Диаметр Солнца равен 1 млн 392 тыс. км (109 диаметров Земли). Объем Солнца, таким образом, более чем в миллион раз превосходит объем Земли, а его масса составляет М  = 1,99 · 10 30 кг, что примерно равно 330 000 земных масс.

Диаметр Солнца равен 1 млн 392 тыс. км (109 диаметров Земли). Объем Солнца, таким образом, более чем в миллион раз превосходит объем Земли, а его масса составляет

М  = 1,99 · 10 30 кг, что примерно равно 330 000 земных масс.

Почти все наши знания о Солнце основаны на изучении его спектра . Химические элементы, которые присутствуют в атмосфере Солнца, поглощают из непрерывного спектра, излучаемого фотосферой, свет определенной частоты. В результате в непрерывном спектре появляются темные линии. Йозеф Фраунгофер впервые изучил и зарисовал 576 темных линий солнечного спектра. Ученый правильно указал, что источник темных спектральных линий — солнечная атмосфера. По положениям в спектре (т. е. длинам волн) и интенсивностям этих фраунгоферовых линий можно установить, какие химические элементы присутствуют в солнечной атмосфере. Йозеф Фраунгофер

Почти все наши знания о Солнце основаны на изучении его спектра . Химические элементы, которые присутствуют в атмосфере Солнца, поглощают из непрерывного спектра, излучаемого фотосферой, свет определенной частоты. В результате в непрерывном спектре появляются темные линии. Йозеф Фраунгофер впервые изучил и зарисовал 576 темных линий солнечного спектра. Ученый правильно указал, что источник темных спектральных линий — солнечная атмосфера. По положениям в спектре (т. е. длинам волн) и интенсивностям этих фраунгоферовых линий можно установить, какие химические элементы присутствуют в солнечной атмосфере.

Йозеф Фраунгофер

Уже отождествлено свыше 30 тыс. линий для 72 химических элементов, присутствующих в атмосфере Солнца. Фраунгоферовы линии по интенсивности и ширине чрезвычайно разнообразны. Анализ спектральных линий показал, что преобладающим элементом на Солнце является водород — на его долю приходится свыше 70 % массы Солнца, около 28 % приходится на гелий и около 2 % на другие элементы.

Уже отождествлено свыше 30 тыс. линий для 72 химических элементов, присутствующих в атмосфере Солнца. Фраунгоферовы линии по интенсивности и ширине чрезвычайно разнообразны. Анализ спектральных линий показал, что преобладающим элементом на Солнце является водород — на его долю приходится свыше 70 % массы Солнца, около 28 % приходится на гелий и около 2 % на другие элементы.

Вещество Солнца сильно ионизовано: атомы, потерявшие электроны своих внешних оболочек и ставшие ионами, вместе со свободными электронами образуют плазму. Средняя плотность солнечного вещества примерно  1400 кг/м 3 . Она соизмерима с плотностью воды и в 1000 раз больше плотности воздуха у поверхности Земли.

Вещество Солнца сильно ионизовано: атомы, потерявшие электроны своих внешних оболочек и ставшие ионами, вместе со свободными электронами образуют плазму. Средняя плотность солнечного вещества примерно 1400 кг/м 3 . Она соизмерима с плотностью воды и в 1000 раз больше плотности воздуха у поверхности Земли.

Основываясь на данных о радиусе, массе, светимости Солнца, на физических законах, можно получить данные о давлении, плотности, температуре и химическом составе на разных расстояниях от центра Солнца. При приближении к центру Солнца растут, достигая максимальных значений, температура, давление и плотность. Химический состав Солнца тоже различается: процентное содержание водорода меньше всего в центре.

Наше Солнце – это огромный светящийся газовый шар, внутри которого протекают сложные процессы и в результате непрерывно выделяется энергия. Внутренний объем Солнца можно разделить на несколько областей; вещество в них отличается по своим свойствам, и энергия распространяется посредством разных физических механизмов. Познакомимся с ними, начиная с самого центра.

В центральной части Солнца находится источник его энергии, или, говоря образным языком, та «печка», которая нагревает его и не дает ему остыть. Эта область называется ядром. Под тяжестью внешних слоев вещество внутри Солнца сжато, причем, чем глубже, тем сильнее. Плотность его увеличивается к центру вместе с ростом давления и температуры. В ядре, где температура достигает 15 млн. кельвинов, происходит выделение энергии.

Эта энергия выделяется в результате слияния атомов легких химических элементов в атомы более тяжелых. В недрах Солнца из четырех атомов водорода образуется один атом гелия. Именно эту страшную энергию люди научились освобождать при взрыве водородной бомбы. Есть надежда, что в недалеком будущем человек сможет научиться использовать ее и в мирных целях (в 2005 году новостные ленты передавали о начале строительства первого международного термоядерного реактора во Франции).

Ядро имеет радиус не более четверти общего радиуса Солнца. Однако в его объеме сосредоточена половина солнечной массы и выделяется практически вся энергия, которая поддерживает свечение Солнца. Но энергия горячего ядра должна как-то выходить наружу, к поверхности Солнца. Существуют различные способы передачи энергии в зависимости от физических условий среды, а именно: лучистый перенос, конвекция и теплопроводность. Теплопроводность не играет большой роли в энергетических процессах на Солнце и звездах, тогда как лучистый и конвективный переносы очень важны.

Высокое давление внутри Солнца обусловлено действием вышележащих слоев. Силы тяготения стремятся сжать Солнце. Им противодействует упругость горячего газа и давление излучения, идущие из недр. Эти силы стремятся расширить Солнце. Тяготение, с одной стороны, а упругость газов и давление излучения, с другой — уравновешивают друг друга. Равновесие имеет место во всех слоях от поверхности до центра Солнца. Такое состояние Солнца и звезд называется гидростатическим равновесием . Эта простая идея была выдвинута в 1924 г. английским астрофизиком Артуром Эддингтоном . Она позволила составить уравнения, по которым рассчитывают модели внутреннего строения Солнца, а также других звезд.

Высокое давление внутри Солнца обусловлено действием вышележащих слоев. Силы тяготения стремятся сжать Солнце. Им противодействует упругость горячего газа и давление излучения, идущие из недр. Эти силы стремятся расширить Солнце. Тяготение, с одной стороны, а упругость газов и давление излучения, с другой — уравновешивают друг друга. Равновесие имеет место во всех слоях от поверхности до центра Солнца. Такое состояние Солнца и звезд называется гидростатическим равновесием .

Эта простая идея была выдвинута в 1924 г. английским астрофизиком Артуром Эддингтоном . Она позволила составить уравнения, по которым рассчитывают модели внутреннего строения Солнца, а также других звезд.

Согласно современным данным, температура в центре Солнца достигает 15 млн К, давление 2,2·10 16 Па, а плотность вещества значительно превышает плотность твёрдых тел в земных условиях: 1,5·10 5 кг/м 3 , т. е. в 13 раз больше плотности свинца. Мощность излучения звезды (называемая также светимостью и обозначаемая буквой L) пропорциональна четвёртой степени её массы: L≈M 4 Мы уже знаем, что солнечное вещество в основном состоит из водорода. Внутри Солнца (на расстояниях до 0,3 радиуса от центра создаются условия, благоприятные для протекания термоядерных реакций превращения атомов легких химических элементов в атомы более тяжелые.

Согласно современным данным, температура в центре Солнца достигает 15 млн К, давление 2,2·10 16 Па, а плотность вещества значительно превышает плотность твёрдых тел в земных условиях: 1,5·10 5 кг/м 3 , т. е. в 13 раз больше плотности свинца.

Мощность излучения звезды (называемая также светимостью и обозначаемая буквой L) пропорциональна четвёртой степени её массы:

L≈M 4

Мы уже знаем, что солнечное вещество в основном состоит из водорода.

Внутри Солнца (на расстояниях до 0,3 радиуса от центра создаются условия, благоприятные для протекания термоядерных реакций превращения атомов легких химических элементов в атомы более тяжелые.

Термоядерная реакция включает такие этапы:   Из ядер водорода образуется второй из легчайших элементов — гелий. Для образования одного ядра гелия требуется 4 ядра водорода. На промежуточных стадиях образуются ядра тяжелого водорода (дейтерия) и ядра изотопа 3 Не. Эта реакция называется протон-протонной . При реакции небольшое количество массы реагирующих ядер водорода теряется, преобразуюсь в огромное количество энергии. Выделившаяся энергия поддерживает излучение Солнца. Через слои, окружающие центральную часть звезды, эта энергия передается наружу

Термоядерная реакция включает такие этапы:

 

Из ядер водорода образуется второй из легчайших элементов — гелий. Для образования одного ядра гелия требуется 4 ядра водорода.

На промежуточных стадиях образуются ядра тяжелого водорода (дейтерия) и ядра изотопа 3 Не. Эта реакция называется протон-протонной .

При реакции небольшое количество массы реагирующих ядер водорода теряется, преобразуюсь в огромное количество энергии. Выделившаяся энергия поддерживает излучение Солнца. Через слои, окружающие центральную часть звезды, эта энергия передается наружу

Рассмотрим, каким образом эта энергия выходит наружу, к поверхности Солнца.

В зоне переноса лучистой энергии освобождённое в ядре тепло распространяется от центра к поверхности Солнца путём излучения, т. е. через поглощение и излучение веществом порций света — квантов. Поскольку кванты излучаются атомами в любых направлениях, их путь к поверхности длится тысячи лет.

Сразу вокруг ядра начинается зона лучистой передачи энергии, где она распространяется через поглощение и излучение веществом порции света – квантов. Плотность, температура и давление уменьшаются по мере удаления от ядра, и в этом же направлении идет поток энергии. В целом процесс этот крайне медленный. Чтобы квантам добраться от центра Солнца до фотосферы, необходимы многие тысячи лет: ведь, переизлучаясь, кванты все время меняют направление, почти столь же часто двигаясь назад, как и вперед.

В центре Солнца рождаются гамма-кванты. Их энергия в миллионы раз больше, чем энергия квантов видимого света, а длина волны очень мала. По дороге кванты претерпевают удивительные превращения. Отдельный квант сначала поглощается каким-нибудь атомом, но тут же снова переизлучается; чаще всего при этом возникает не один прежний квант, а два или несколько. По закону сохранения энергии их общая энергия сохраняется, а потому энергия каждого из них уменьшается. Так возникают кванты все меньших и меньших энергий. Мощные гамма-кванты как бы дробятся на менее энергичные кванты – сначала рентгеновских, потом ультрафиолетовых и

наконец видимых и инфракрасных лучей. В итоге наибольшее количество энергии Солнце излучает в видимом свете, и не случайно наши глаза чувствительны к нему.

Как мы уже говорили, кванту требуется очень много времени, чтобы просочиться через плотное солнечное вещество наружу. Так что если бы «печка» внутри Солнца вдруг погасла, то мы узнали бы об этом только миллионы лет спустя. На своем пути через внутренние солнечные слои поток энергии встречает такую область, где непрозрачность газа сильно возрастает. Это конвективная зона Солнца. Здесь энергия передается уже не излучением, а конвекцией.

В зоне конвекции энергия переносится к поверхности всплывающими потоками горячего газа. Достигнув поверхности, газ, излучая энергию, охлаждается, уплотняется и погружается к основанию зоны. В конвективной зоне газ непрозрачен. Поэтому можно увидеть только те слои, которые находятся над ней: фотосферу , хромосферу и корону.  Эти три слоя относятся к  солнечной атмосфере .

В зоне конвекции энергия переносится к поверхности всплывающими потоками горячего газа. Достигнув поверхности, газ, излучая энергию, охлаждается, уплотняется и погружается к основанию зоны. В конвективной зоне газ непрозрачен. Поэтому можно увидеть только те слои, которые находятся над ней: фотосферу , хромосферу и корону.

Эти три слоя относятся к  солнечной атмосфере .

Выделение энергии и её перенос определяют внутреннее строение Солнца:

ядро — центральная зона, где при высоком давлении и температуре происходят термоядерные реакции;

лучистая зона , где энергия передаётся наружу от слоя к слою в результате последовательного поглощения и излучения квантов;

наружная конвективная зона , где энергия от слоя к слою переносится самим веществом в результате перемешивания (конвекции).

Каждая из этих зон занимает примерно 1/3 солнечного радиуса.

Когда жидкость кипит, она перемешивается. Так же может вести себя и газ. Огромные потоки горячего газа поднимаются вверх, где отдают свое тепло окружающей среде, а охлажденный солнечный газ спускается вниз. Похоже, что солнечное вещество кипит и перемешивается. Конвективная зона начинается примерно на расстоянии 0,7 радиуса от центра и простирается практически до самой видимой поверхности Солнца (фотосферы), где перенос основного потока энергии вновь становится лучистым. Однако по инерции сюда все же проникают горячие потоки из более глубоких, конвективных слоев. Хорошо известная наблюдателям картина грануляции на поверхности Солнца является видимым проявлением конвекции.

Конвективная зона Солнца

Радиоактивная зона около 2/3 внутреннего диаметра Солнца, а радиус составляет около 140 тыс.км. Удаляясь от центра, фотоны теряют свою энергию под влиянием столкновения. Такое явление называют – феномен конвекции. Это напоминает процесс, происходящий в кипящем чайнике: энергии, поступающей от нагревательного элемента, намного больше того количества, которое отводится тепло проводимостью. Горячая вода, находящаяся в близости от огня, поднимается, а более холодная опускается вниз. Этот процесс называются конвенция. Смысл конвекции в том, что более плотный газ распределяется по поверхности, охлаждается и снова идет к центру. Процесс перемешивания в конвективной зоне Солнца осуществляется непрерывно. Глядя в телескоп на поверхность Солнца, можно увидеть ее зернистую структуру – грануляции. Ощущение такое, что оно состоит из гранул! Это связано с конвекцией, происходящей под фотосферой.

Сразу за конвективной зоной начинается атмосфера , которая простирается далеко за пределы видимого диска Солнца. Её нижний слой — фотосфера — воспринимается как поверхность Солнца. Верхние слои атмосферы непосредственно не видны и могут наблюдаться либо во время полных солнечных затмений, либо из космического пространства, либо при помощи специальных приборов с поверхности Земли.

Тонкий слой (400 км) – фотосфера Солнца, находится прямо за конвективной зоной и представляет собой видимую с Земли «настоящую солнечную поверхность». Впервые гранулы на фотосфере сфотографировал француз Янссен в 1885г. Среднестатистическая гранула имеет размер 1000 км, передвигается со скоростью 1км/сек и существует примерно 15 мин. Темные образования на фотосфере можно наблюдать в экваториальной части, а потом они сдвигаются. Сильнейшие магнитные поля, являются отличительно чертой таких пятен. А темный цвет получается вследствие более низкой температуры, относительно окружающей фотосферы.

Хромосфера Солнца (цветная сфера) – плотный слой (10 000 км) солнечной атмосферы, который находится прямо за фотосферой. Хромосферу наблюдать достаточно проблематично, за счет ее близкого расположения к фотосфере. Лучше всего ее видно, когда Луна закрывает фотосферу, т.е. во время солнечных затмений.

Солнечные протуберанцы – это огромные выбросы водорода, напоминающие светящиеся длинные волокна. Протуберанцы поднимаются на огромные расстояние, достигающие диаметра Солнца (1.4 млм км), двигаются со скоростью около 300 км/сек, а температура при этом, достигает 10 000 градусов.

Солнечная корона

Солнечная корона – внешние и протяженные слои атмосферы Солнца, берущие начало над хромосферой. Длина солнечной короны является очень продолжительной и достигает значений в несколько диаметров Солнца. На вопрос где именно она заканчивается, ученые пока не получили однозначного ответа.

Состав солнечной короны – это разряженная, высоко ионизированная плазма. В ней содержатся тяжелые ионы, электроны с ядром из гелия и протоны. Температура короны достигает от 1 до 2ух млн градусов К, относительно поверхности Солнца.

Солнечный ветер – это непрерывное истечение вещества (плазмы) из внешней оболочки солнечной атмосферы. В его состав входят протоны, атомные ядра и электроны. Скорость солнечного ветра может меняться от 300 км/сек до 1500 км/сек, в соответствии с процессами, происходящими на Солнце. Солнечный ветер, распространяется по всей солнечной системе и, взаимодействуя с магнитным полем Земли, вызывает различный явления, одним из которых, является северное сияние.

Ядро - зона ядерных реакций Лучистая зона (зона переноса лучистой энергии Зона конвекции Фотосфера Хромосфера Солнечная корона Пятна Гранулы Протуберанец
  • Ядро - зона ядерных реакций
  • Лучистая зона (зона переноса лучистой энергии
  • Зона конвекции
  • Фотосфера
  • Хромосфера
  • Солнечная корона
  • Пятна
  • Гранулы
  • Протуберанец
Атмосфера Солнца Диск Солнца кажется резко очерченным. Это происходит потому, что практически всё видимое излучение Солнца исходит из очень тонкого слоя — фотосферы . Слабое излучение более высоких слоёв Солнца можно наблюдать во время полного солнечного затмения, когда диск Луны полностью закрывает фотосферу и становятся видны хромосфера и корона. Фотосфера, хромосфера и корона образуют атмосферу Солнца .
  • Атмосфера Солнца

Диск Солнца кажется резко очерченным. Это происходит потому, что практически всё видимое излучение Солнца исходит из очень тонкого слоя — фотосферы . Слабое излучение более высоких слоёв Солнца можно наблюдать во время полного солнечного затмения, когда диск Луны полностью закрывает фотосферу и становятся видны хромосфера и корона.

Фотосфера, хромосфера и корона образуют атмосферу Солнца .

Толщина фотосферы не превышает 300 км. В телескоп видно, что вся поверхность Солнца покрыта гранулами, каждая диаметром около 700 км. Это огромные пузыри плазмы. Рисунок, который образуют гранулы, постоянно изменяется (буквально за 5—10 мин они успевают появиться и исчезнуть). Плазма в гранулах поднимается вверх и, остывая, в межгранульных пространствах опускается вниз. Поэтому разность температур гранул и тёмных промежутков достигает 600 К. Процесс постоянного возникновения и исчезновения гранул в фотосфере называется грануляцией.

Толщина фотосферы не превышает 300 км. В телескоп видно, что вся поверхность Солнца покрыта гранулами, каждая диаметром около 700 км. Это огромные пузыри плазмы. Рисунок, который образуют гранулы, постоянно изменяется (буквально за 5—10 мин они успевают появиться и исчезнуть). Плазма в гранулах поднимается вверх и, остывая, в межгранульных пространствах опускается вниз. Поэтому разность температур гранул и тёмных промежутков достигает 600 К.

Процесс постоянного возникновения и исчезновения гранул в фотосфере называется грануляцией.

Самые приметные объекты на Солнце — это тёмные пятна . Диаметры пятен иногда достигают 200 тыс. км. Совсем маленькие пятна называют порами .

Самые приметные объекты на Солнце — это тёмные пятна . Диаметры пятен иногда достигают 200 тыс. км. Совсем маленькие пятна называют порами .

Картина солнечных пятен, хотя и несколько медленнее, также постоянно меняется: пятна появляются, растут и распадаются. Время жизни групп пятен составляет два или три оборота Солнца вокруг своей оси.

Картина солнечных пятен, хотя и несколько медленнее, также постоянно меняется: пятна появляются, растут и распадаются. Время жизни групп пятен составляет два или три оборота Солнца вокруг своей оси.

Пятна холоднее окружающей фотосферы на 2—2,5 тыс. градусов, поэтому на общем фоне солнечного диска они выглядят темнее. Солнечные пятна обычно появляются группами в пределах небольшой области, вытянутой параллельно экватору. По размерам в группе выделяются два пятна: головное (западное) пятно , идущее впереди по вращению Солнца, и хвостовое .

Пятна холоднее окружающей фотосферы на 2—2,5 тыс. градусов, поэтому на общем фоне солнечного диска они выглядят темнее. Солнечные пятна обычно появляются группами в пределах небольшой области, вытянутой параллельно экватору.

По размерам в группе выделяются два пятна: головное (западное) пятно , идущее впереди по вращению Солнца, и хвостовое .

Систематические наблюдения солнечных пятен показывают, что Солнце вращается в направлении движения планет и плоскость солнечного экватора наклонена к плоскости эклиптики под углом 7°15'. Также обнаружено, что угловая скорость вращения Солнца убывает от экватора к полюсам. Период вращения Солнца изменяется от 25 суток на экваторе до 34,3 суток у полюсов.

Систематические наблюдения солнечных пятен показывают, что Солнце вращается в направлении движения планет и плоскость солнечного экватора наклонена к плоскости эклиптики под углом 7°15'. Также обнаружено, что угловая скорость вращения Солнца убывает от экватора к полюсам. Период вращения Солнца изменяется от 25 суток на экваторе до 34,3 суток у полюсов.

Многолетние наблюдения образования пятен на Солнце показали, что имеются циклические колебания числа пятен. Иногда их не бывает совсем, а иногда одновременно возникают десятки крупных пятен. Средняя продолжительность такого цикла составляет примерно 11 лет.

Многолетние наблюдения образования пятен на Солнце показали, что имеются циклические колебания числа пятен. Иногда их не бывает совсем, а иногда одновременно возникают десятки крупных пятен. Средняя продолжительность такого цикла составляет примерно 11 лет.

Кроме пятен, в фотосфере наблюдаются факелы — яркие области, в зоне которых часто и развиваются тёмные пятна. Факелы имеют сложную волокнистую структуру, их температура на несколько сотен градусов превышает температуру фотосферы.

Кроме пятен, в фотосфере наблюдаются факелы — яркие области, в зоне которых часто и развиваются тёмные пятна. Факелы имеют сложную волокнистую структуру, их температура на несколько сотен градусов превышает температуру фотосферы.

Образование пятен и факелов связано с магнитным полем Солнца. Индукция магнитного поля Солнца в среднем в два раза выше, чем на поверхности Земли, однако в местах появления солнечных пятен она увеличивается в тысячи раз, достигая 0,5 Тл. Это приводит первоначально к облегчению конвекции и появлению факела, а потом — к ослаблению и появлению тёмного пятна.

Образование пятен и факелов связано с магнитным полем Солнца. Индукция магнитного поля Солнца в среднем в два раза выше, чем на поверхности Земли, однако в местах появления солнечных пятен она увеличивается в тысячи раз, достигая 0,5 Тл. Это приводит первоначально к облегчению конвекции и появлению факела, а потом — к ослаблению и появлению тёмного пятна.

Над фотосферой находится хромосфера Солнца. Общая её протяжённость 10—15 тыс. км. Температура в хромосфере с высотой не падает, а растёт от 4500 К до нескольких десятков тысяч. Излучение хромосферы в сотни раз меньше фотосферного, поэтому для её наблюдения применяют специальные методы, позволяющие выделять слабое излучение.

Над фотосферой находится хромосфера Солнца. Общая её протяжённость 10—15 тыс. км. Температура в хромосфере с высотой не падает, а растёт от 4500 К до нескольких десятков тысяч. Излучение хромосферы в сотни раз меньше фотосферного, поэтому для её наблюдения применяют специальные методы, позволяющие выделять слабое излучение.

Хромосфера весьма неоднородна и представляется наблюдателю в виде постоянно вьющихся продолговатых язычков - спикул - длиной порядка 10 тыс. км. Спикулы выбрасываются из нижней хромосферы со скоростями до 30 км/с; время их жизни составляет несколько минут.

Хромосфера весьма неоднородна и представляется наблюдателю в виде постоянно вьющихся продолговатых язычков - спикул - длиной порядка 10 тыс. км. Спикулы выбрасываются из нижней хромосферы со скоростями до 30 км/с; время их жизни составляет несколько минут.

На краю солнечного диска хорошо видны протуберанцы — плотные конденсации вещества, поднятые над поверхностью линиями магнитного поля в виде арок или выступов . Протуберанцы бывают спокойные, активные и эруптивные, выделяются на фоне короны, так как имеют более высокую плотность. Скорость движения вещества активных протуберанцев достигает 200 км/с, а высота подъёма — до 40 радиусов Земли.

На краю солнечного диска хорошо видны протуберанцы — плотные конденсации вещества, поднятые над поверхностью линиями магнитного поля в виде арок или выступов . Протуберанцы бывают спокойные, активные и эруптивные, выделяются на фоне короны, так как имеют более высокую плотность. Скорость движения вещества активных протуберанцев достигает 200 км/с, а высота подъёма — до 40 радиусов Земли.

На Солнце наблюдаются взрывные выбросы энергии и вещества (со скоростью до 100 тыс. км/с), охватывающие значительные области поверхностного слоя — вспышки . Эти яркие образования существуют от нескольких минут до 3 часов. Обычно солнечные вспышки проходят вблизи быстро развивающихся групп солнечных пятен.

На Солнце наблюдаются взрывные выбросы энергии и вещества (со скоростью до 100 тыс. км/с), охватывающие значительные области поверхностного слоя — вспышки . Эти яркие образования существуют от нескольких минут до 3 часов. Обычно солнечные вспышки проходят вблизи быстро развивающихся групп солнечных пятен.

Солнечная корона — самая разреженная и горячая оболочка Солнца, распространяющаяся от него на несколько солнечных радиусов и имеющая температуру плазмы от 1 до 2 млн градусов

Солнечная корона — самая разреженная и горячая оболочка Солнца, распространяющаяся от него на несколько солнечных радиусов и имеющая температуру плазмы от 1 до 2 млн градусов

Яркость солнечной короны в миллион раз меньше, чем фотосферы. Поэтому наблюдать солнечную корону можно во время полных солнечных затмений или с помощью специальных телескопов-коронографов. Высокая температура и разреженность короны подтверждена спектральным анализом, а также по её радио- и рентгеновскому излучению.

Яркость солнечной короны в миллион раз меньше, чем фотосферы. Поэтому наблюдать солнечную корону можно во время полных солнечных затмений или с помощью специальных телескопов-коронографов. Высокая температура и разреженность короны подтверждена спектральным анализом, а также по её радио- и рентгеновскому излучению.

Масса, радиус, количество энергии, излучаемой Солнцем, остаются практически постоянными, но на всех уровнях солнечной атмосферы наблюдаются структурные образования, изменяющие свои физические параметры во времени. Совокупность нестационарных процессов, периодически возникающих в солнечной атмосфере, называется солнечной активностью.

В ходе наблюдений ученые выяснили, что Солнце – мощный источник радиоизлучения. В межпланетное пространство проникают радиоволны, которые излучает хромосфера (сантиметровые волны) и корона (дециметровые и метровые волны). Радиоизлучение Солнца имеет две составляющие – постоянную и переменную (всплески, «шумовые бури»). Во время сильных солнечных вспышек радиоизлучение Солнца возрастает в тысячи и даже миллионы раз по сравнению с радиоизлучением спокойного Солнца. Это радиоизлучение имеет нетепловую природу.

Рентгеновские лучи исходят в основном от верхних слоев хромосферы и короны. Особенно сильным излучение бывает в годы максимума солнечной активности.

Солнце излучает не только свет, тепло и все другие виды электромагнитного излучения. Оно также является источником постоянного потока частиц – корпускул. Нейтрино, электроны, протоны, альфа-частицы, а также более тяжелые атомные ядра все вместе составляют корпускулярное излучение Солнца. Значительная часть этого излучения представляет собой более или менее непрерывное истечение плазмы – солнечный ветер, являющийся продолжением внешних слоев солнечной атмосферы – солнечной короны. На фоне этого постоянно дующего плазменного ветра отдельные области на Солнце являются источниками более направленных, усиленных, так называемых корпускулярных потоков. Скорее всего, они связаны с особыми областями солнечной короны – коронарными дырами, а также, возможно, с долгоживущими активными областями на Солнце. Наконец, с солнечными вспышками связанны наиболее мощные кратковременные потоки частиц, главным образом электронов и протонов. В результате наиболее мощных вспышек частицы могут приобретать скорости, составляющие заметную долю скорости света. Частицы с такими большими энергиями называются солнечными космическими лучами.

Солнечное корпускулярное излучение оказывает сильное влияние на Землю, и прежде всего на верхние слои ее атмосферы и магнитное поле, вызывая множество геофизических явлений. От вредного влияния излучения Солнца нас защищает магнитосфера и атмосфера Земли

Проявлением солнечной активности являются пятна, факелы в фотосфере, протуберанцы, вспышки и выбросы вещества в атмосфере и короне. Места, где они возникают, называются активными областями . Все активные образования взаимосвязаны между собой с помощью изменяющихся магнитных полей, которые всегда присутствуют в активных областях Солнца. Центры активности, зарождаясь на некоторой глубине под фотосферой, простираются в виде ярусов далеко в солнечную корону.

Имея крайне высокие температуры, Солнце является очень сильным источником излучения. Видимый диапазон солнечного излучения обладает наивысшей интенсивность излучения. При этом до Земли так же доходит большое количество невидимого спектра. Внутри Солнца протекают процессы, при которых из атомов водорода синтезируются атомы гелия. Это процессы называются процессами ядерного синтеза, они сопровождаются выделением огромного количества энергии. Эта энергия приводит к тому, что Солнце разогревается до температуры 15 миллионов градусов Цельсия (во внутренней его части).

На поверхности Солнца (фотосфере) температура достигает 5500 °С. На этой поверхности Солнце излучает энергию со значение 63 МВт/ м². До поверхности Земли доходит лишь немногая часть этого излучения, что позволяет комфортно существовать человечеству на нашей планете. Средняя интенсивность излучения на атмосферу Земли приблизительно равна 1367 Вт/м². Данное значение может колебаться в диапазоне 5% из-за того что, двигаясь по эллиптической орбите Земля отдаляется от Солнца на разное расстояние в течение года. Значение 1367 Вт/ м² называют солнечной постоянной.

Солнце в рентгеновских лучах. Наиболее яркие места - области проявления солнечной активности

Атмосфера Земли не пропускает всю солнечную энергию. Поверхности Земли достигает не более 1000 Вт/м2. Часть энергии поглощается, часть отражается в слоях атмосферы и в облаках. Большое количество излучения рассеивается в слоях атмосферы, вследствие чего образуется рассеянное излучение (диффузное). На поверхности Земли тоже часть излучения отражается и превращается в рассеянное. Сумма рассеянного и прямого излучения называется суммарным солнечным излучением. Рассеянное излучение может составлять от 20 до 60%. На количество энергии, поступающее к поверхности Земли, так же влияет географическая широта и время года. Ось нашей планеты, проходящая через полюса, наклонена на 23,5° относительно орбиты вращения вокруг Солнца. В период с марта до сентября солнечный свет больше попадает на Северное полушарие, в остальное время – Южное. Поэтому продолжительность дня в летнее и зимнее время разная. Широта местности та влияет на продолжительность светового дня. Чем Севернее, тем длиннее в летнее время и наоборот.

Атмосфера Земли не пропускает всю солнечную энергию. Поверхности Земли достигает не более 1000 Вт/м2. Часть энергии поглощается, часть отражается в слоях атмосферы и в облаках. Большое количество излучения рассеивается в слоях атмосферы, вследствие чего образуется рассеянное излучение (диффузное). На поверхности Земли тоже часть излучения отражается и превращается в рассеянное. Сумма рассеянного и прямого излучения называется суммарным солнечным излучением. Рассеянное излучение может составлять от 20 до 60%.

На количество энергии, поступающее к поверхности Земли, так же влияет географическая широта и время года. Ось нашей планеты, проходящая через полюса, наклонена на 23,5° относительно орбиты вращения вокруг Солнца. В период с марта

до сентября солнечный свет больше попадает на Северное полушарие, в остальное время – Южное. Поэтому продолжительность дня в летнее и зимнее время разная. Широта местности та влияет на продолжительность светового дня. Чем Севернее, тем длиннее в летнее время и наоборот.

Не только появление пятен, но и солнечная активность в целом имеют 11-летнюю цикличность (колебание циклов фактически проходит в пределах от 7,5 до 16 лет).

Не только появление пятен, но и солнечная активность в целом имеют 11-летнюю цикличность (колебание циклов фактически проходит в пределах от 7,5 до 16 лет).

Когда в центре звезды весь водород превращается в гелий, структура звезды начинает заметно меняться. Её светимость растёт, температура поверхности понижается, внешние слои расширяются, а внутренние сжимаются. Звезда становится красным гигантом , т. е. звездой огромного размера с высокой светимостью и очень малой плотностью. В центре образуется плотное и горячее гелиевое ядро. Когда температура в нём достигает 100 млн °С, начинается реакция превращения гелия в углерод, сопровождающаяся выделением большого количества энергии.

Предполагается, что Солнце родилось в сжавшейся газопылевой туманности. Есть, по крайней мере, две теории относительно того, что дало толчок первоначальному сжатию туманности. Согласно одной из них предполагается, что один из спиральных рукавов нашей галактики проходил через нашу область пространства примерно 5 млрд. лет назад. Это могло вызвать легкое сжатие и привести к формированию центров тяготения в газо-пылевом облаке. Действительно, сейчас вдоль спиральных рукавов мы видим довольно большое количество молодых звезд и светящихся газовых облаков. Другая теория предполагает, что где-то недалеко (по масштабам Вселенной, конечно) взорвалась древняя массивная сверхновая звезда. Возникшая ударная волна могла быть достаточно сильной, чтобы инициировать звездообразование в «нашей» газо-пылевой туманности. В пользу этой теории говорит то, что ученые, изучая метеориты, обнаружили довольно много элементов, которые могли образоваться при взрыве сверхновой.

Далее, когда столь грандиозная масса (2*1030кг) сжималась под действием сил гравитации, она сама себя сильно разогрела внутренним давлением до температур, при которых в ее центре смогли начаться термоядерные реакции. В центральной части температура на Солнце равна 15000000K, а давление достигает сотни миллиардов атмосфер. Так зажглась новорожденная звезда (не путайте с новыми звездами).

В основном Солнце в начале своей жизни состояло из водорода. Именно водород в ходе термоядерных реакций превращается в гелий, при этом выделяется энергия, излучаемая Солнцем. Солнце принадлежит к типу звезд, называемых желтыми карликами. Оно – звезда главной последовательности и относится к спектральному классу G2. Масса одинокой звезды довольно однозначно определяет ее судьбу. За время жизни (~5 миллиардов лет), в центре нашего светила, где температура достаточно высока, сгорело около половины всего имеющегося там водорода. Примерно столько же, 5 миллиардов лет, Солнцу осталось жить в таком виде, к которому мы с вами привыкли.

На следующей стадии звёзды типа Солнца сбрасывают часть вещества, сжимаются до размеров планет, превращаясь в маленькие, очень плотные звёзды —  белые карлики , и медленно остывают.

После того, как в центре светила водород будет на исходе, Солнце увеличится в размерах, станет красным гигантом. Это сильнейшим образом скажется на Земле: повысится температура, океаны выкипят, жизнь станет невозможной. Затем, исчерпав «топливо» совсем и не имея более сил держать внешние слои красного гиганта, наша звезда закончит свою жизнь как белый карлик, порадовав неведомых нам внеземных астрономов будущего новой планетарной туманностью, форма которой может оказаться весьма причудливой благодаря влиянию планет.

Уже через 1,1 млрд. лет, светило увеличит свою яркость на 10 %, что повлечет сильное нагревание Земли.

Через 3,5 млрд. лет, яркость увеличиться на 40%. Начнут испаряться океаны и наступит конец всему живому на Земле.

По прошествии 5,4 млрд. лет, в ядре звезды закончится топливо – водород. Солнце начнет увеличиваться в размерах, за счет разрежения внешней оболочки и нагрева ядра.

Через 7,7 млрд. лет, наша звезда превратиться в красного гиганта, т.к. увеличиться в 200 раз из-за этого будет поглощена планета Меркурий.

В конце, через 7,9 млрд. лет, внешние слои звезды настолько разредятся, что распадаться на туманность, а в центре бывшего Солнца будет маленький объект – белый карлик. Так закончит существование наша Солнечная система. Все строительные элементы, оставшиеся после распада, не пропадут, они станут основой для зарождения новых звезд и планет.

  • Наиболее распространенными звездами во вселенной являются красные карлики. По большей части это происходит из-за их низкой массы, что позволяет им жить в течение очень долгого времени, прежде чем превратиться в белых карликов.
  • Почти все звезды во вселенной имеют одинаковый химический состав и реакция ядерного синтеза происходит в каждой звезде и является практически идентичной, определяясь лишь запасом топлива.
  • Как мы знаем как и белый карлик, нейтронные звезды являются одним из конечных процессов эволюции звёзд, во многом возникая после взрыва сверхновой. Ранее зачастую тяжело было отличить белого карлика от нейтронной звезды, сейчас же ученые с помощью телескопов нашли различия в них. Нейтронная звезда собирает вокруг себя больше света и это легко увидеть с помощью инфракрасных телескопов. Восьмое место среди интересных фактов о звездах.
  • Благодаря своей невероятной массе, согласно общей теории относительности Эйнштейна, черная дыра на самом деле, это изгиб пространства, таким образом, что все в пределах их гравитационного поля выталкивается к нему. Гравитационное поле черной дыры настолько сильно, что даже свет не может избежать ее.
  • На сколько мы знаем когда у звезды заканчивается топливо, звезда может вырастать в размерах более чем в 1000 раз, далее она превращается в белого карлика, а из-за скорости реакции взрываются. Эта реакция более известна как сверхновая. Ученые предполагают, что в связи с этим долгим процессом и образуются, столь загадочные черные дыры.
  • Многие звезды которые мы наблюдаем в ночном небе, могут казаться одним проблеском света. Однако это не всегда так. Большинство звезд, которые мы видим в небе на самом деле две звездные системы, или бинарные звездные системы. Они просто невообразимо далеко и нам кажется, что мы видим лишь одно пятнышко света.
  • Звезды которые имеют самую короткую продолжительность жизни, являются наиболее массивными. Они представляют собой высокую массу химических веществ и как правило сжигают свое топливо гораздо быстрее.
  • Не смотря на то что нам иногда кажется что Солнце и звезды мерцают, на самом деле это не так. Эффект мерцания является лишь светом от звезды, который в это время проходит через атмосферу Земли но еще не достиг наших глаз. Третье место среди самых интересных фактов о звездах.
  • Расстояния, участвующие в оценке того, насколько далеко до звезды невообразимо огромны огромны. Рассмотрим пример: До ближайшая до земли звезда находится на расстоянии примерно 4.2 световых года, и что бы добраться до нее, даже на самом быстром нашем корабле, потребуется около 70 000 лет.
  • Самая холодная известная звезда, это коричневый карлик «CFBDSIR 1458+10B» имеющий температуру всего около 100 °C. Самая горячая известная звезда, это голубой сверх гигант, находящийся в млечном пути под названием «Дзета Кормы» ее температура более 42 000 °C.

Домашнее задание: §71, вопросы к параграфу

Домашнее задание:

§71, вопросы к параграфу