СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Тема "Бионика "

Категория: Биология

Нажмите, чтобы узнать подробности

первый урок биологии

Просмотр содержимого документа
«Тема "Бионика "»





Первый урок биологии в 7 классе провожу именно так.

«Удивление есть начало всякой мудрости»Сократ

Тема урока: Бионика – чудо или реальность?

Цель: Изучение системы биологических наук , представление бионики , как прикладной науки, основанной на глубоких знаниях живых организмов и применение этих знаний в технических целях Биология – это наука о живых организмах.

Какие науки о живых организмах вы знаете?

Биологи не просто изучают живое, но и еще умеют находить в каждом живом организме что –то необычное, удивительное.

Знакомимся- наука бионика

1 слайд

Птица – действующий по математическому закону инструмент, сделать который в человеческой власти…

Леонардо да Винчи

2 слайд. У бионики есть символ: скрещенные скальпель, паяльник и знак интеграла., а девиз «Живые прототипы – ключ к новой технике»

Этот союз биологии, техники и математики позволяет надеяться, что наука бионика проникнет туда, куда не проникал еще никто, и увидит то, чего не видел еще никто.

3 слайд. Бионика - наука, пограничная между биологией и техникой, решающая инженерные задачи на основе моделирования структуры и жизнедеятельности организмов. Бионика тесно связана с биологией, физикой, химией, кибернетикой и инженерными науками - электроникой, навигацией, связью, морским делом и др

4 слайд. Бионика - наука об использовании в технике знаний о конструкции, принципе и технологическом процессе живого организма

Прародителем бионики считается Леонардо да Винчи. Его чертежи и схемы летательных аппаратов были основаны на строении крыла птицы

Датой рождения бионики принято считать 13 сентября 1960 г., однако в действительности основные концепции бионики сложились задолго до этого.Людей всегда интересовало, можно ли, например, научиться летать, как птицы, или плавать под водой, как рыбы? Сначала человек только мечтал об этом: он придумывал сказки о волшебном ковре-самолете, о подводных царствах, где могут жить люди. С незапамятных времен люди пытались подражать природе, копировать внешний вид различных организмов при создании машин и устройств.

5 слайд паук –серебрянка и водолазный колокол Галилея

Перо птицы –застежка молния, плоды дурнишника и застежка -липучка

6 слайд. Конструкция Эйфелевой башни основана на научной работе швейцарского профессора анатомии Хермана фон Мейера (Hermann Von Meyer). За 40 лет до сооружения парижского инженерного чуда профессор исследовал костную структуру головки бедренной кости в том месте, где она изгибается и под углом входит в сустав. И при этом кость почему-то не ломается под тяжестью тела.

7 слайд Основоположник современной аэродинамики Н. Е. Жуковский тщательно изучил механизм полёта птиц и условия, позволяющие им парить в воздухе. На основании исследования полёта птиц появилась авиация.

8 слайд

Ещё более совершенным летательным аппаратом в живой природе обладают насекомые. По экономичности полета, относительной скорости и маневренности они не имеют себе равных в живой природе. Идея создания летательного аппарата, в основе которого лежал бы принцип полёта насекомых, ждёт своего разрешения

Чтобы в полёте не возникали вредные колебания, на концах крыльев у быстролетающих насекомых имеются хитиновые утолщения. Сейчас авиаконструкторы применяют подобные приспособления для крыльев самолётов, тем самым устраняя опасность вибрации

9 слайд

Учёные установили функцию жужжальцев мух. Во время полёта жужжальца определяют отклонение от горизонтального положения. На принципе жужжальца был создан прибор гиротрон, применяемый в скоростных самолётах и ракетах для определения углового отклонения стабильности полёта

10 слайд

Благодаря изучению гидродинамических особенностей китов и рыб, удалось создать особую обшивку торпед, которая при той же мощности двигателя обеспечивает повышение скорости на 20 — 25%.

11 слайд

Японские инженеры и биологи установили в результате многочисленных экспериментов, что форма тела кита совершеннее формы современных судов. Было построено большое океанское китоподобное судно, и преимущества новой конструкции сказались тут же. При мощности двигателя, уменьшенной на четверть, скорость и грузоподъемность остались теми же.

12 слайд Бионический принцип положен и в основу конструкции снегоходной машины «Пингвин». Она полностью оправдывает свое название. Как движутся по рыхлому снегу пингвины? На брюхе, отталкиваясь от снега ластами, как лыжными палками. Так же, лежа на снегу днищем, скользит по поверхности снега и «Пингвин» механический.

13 слайд Реактивное движение, используемое в самолетах, ракетах и космических снарядах, свойственно также головоногим моллюскам – осьминогам, кальмарам, каракатицам. Наибольший интерес для техники представляет реактивный движитель кальмара. В сущности, кальмар располагает двумя принципиально разными движителями. При медленном перемещении он пользуется большим ромбовидным плавником, периодически изгибающимся. Для быстрого броска животное использует реактивный движитель. Мышечная ткань- мантия окружает тело моллюска со всех сторон, объем ее составляет почти половину объёма его тела. При реактивном способе плавания животное засасывает воду внутрь мантийной полости через мантийную щель. Движение кальмара создается за счёт выбрасывания струи воды через узкое сопло (воронку). Это сопло снабжено специальным клапаном, и мышцы могут его поворачивать, чем достигается изменение направление движения. Движитель кальмара очень экономичен, благодаря чему он может достигать скорости 70 км/ч; некоторые исследователи считают, что даже до 150 км/ч.

14 слайд

По форме корпуса он похож на дельфина. Глиссер красив и быстро катается, имея возможность, натурально, по-дельфиньи играть в волнах, помахивая плавничком. Корпус сделан из поликарбоната. Мотор при этом очень мощный. Первый такой дельфин был построен компанией Innespace в 2001 году.

15 слайд

Во время первой мировой войны английский флот нес огромные потери из-за германских подводных лодок. Необходимо было научиться их обнаруживать и выслеживать. Для этой цели создали специальные приборы — гидрофоны. Эти приборы должны были находить подводные лодки противника по шуму гребных винтов. Их установили на кораблях, но во время хода корабля движение воды у приемного отверстия гидрофона создавало шум, который заглушал шум подводной лодки.
Физик Роберт Вуд предложил инженерам поучиться... у тюленей, которые хорошо слышат при движении в воде. В итоге приемному отверстию гидрофона придали форму ушной раковины тюленя, и гидрофоны стали "слышать" даже на полном ходу корабля.

16 слайд

Долгое время оставалась загадочной способность летучих мышей летать в полной темноте. Лишь в наше время было установлено, что летучие мыши могут издавать и улавливать ультразвуки. Беспрерывно испуская в полёте ультразвуки и воспринимая их отражение от окружающих предметов, летучие мыши как бы ощупывают в темноте окружающее пространство.

Моделирование локаторов по живым организмам открывает новые перспективы их использования в качестве чувствительных элементов различных технических систем.

17 слайд

Многие растения и животные обладают способностью «чувствовать» некоторые явления природы и её воздействие, которые человек даже не замечает. Так, задолго до начала шторма медузы спешат укрыться в безопасном месте. Оказывается, сигналом к этому служат инфразвуки частотой 3-13 Гц, возникающие от трения волн о воздух. Интенсивные инфразвуковые колебания, образующиеся над поверхностью моря при сильном ветре в результате вихревых процессов у гребней волн, распространяются быстрее штормового фронта. Медузы воспринимают эти колебания. В результате изучения данного явления был сконструирован прибор, позволяющий определить направление шторма и силу задолго до его начала (примерно за 15 часов).

18 слайд ультразвук и области его применения

19 слайд

Как известно, самые преданные сторонники бионики — это инженеры, которые  конструируют роботов. Сегодня среди разработчиков очень популярна такая точка зрения, что в будущем роботы  смогут эффективно функционировать только в том случае, если они будут максимально похожи на людей. Разработчики -бионики  исходят из того, что роботам придется функционировать в городских и домашних условиях, то есть в «человеческой» среде — с лестницами, дверями и другими препятствиями специфического размера. Поэтому, как минимум, они обязаны соответствовать человеку по размеру и по принципам передвижения. Другими словами, у робота обязательно должны быть ноги, а  колеса, гусеницы и прочее совсем не подходит для города. И у кого же копировать конструкцию ног, если не у животных?

20 слайд

Ученым из Института реабилитации Чикаго удалось создать бионический протез, который позволяет пациенту не только управлять рукой с помощью мыслей, но и распознавать некоторые ощущения. Обладательницей бионической руки стала Клаудиа Митчелл (Claudia Mitchell), в прошлом служившая в морском флоте США.
В 2005 году Митчелл пострадала в аварии. Хирургам пришлось ампутировать левую руку Митчелл по самое плечо. Как следствие, нервы, которые могли бы быть в дальнейшем использованы для контроля над протезом, остались без применения

21 слайд

В Стенфорде так же разработан одноногий прыгающий монопод человеческого роста, который способен удерживать неустойчивое равновесие, постоянно прыгая. В перспективе ученые из Стенфорда надеются создать двуногого робота с человеческой системой ходьбы

22 слайд

Исследователи из Bell Labs обнаружили, что в глубоководных морских губках содержится оптоволокно, по свойствам очень близкое к самым современным образцам волокон, используемых в телекоммуникационных сетях. Ученые были поражены тем, насколько близкими оказались структуры природных оптических волокон к тем образцам, что разрабатывались в лабораториях

23 слайд

В октябре 2003 года в исследовательском центре Xerox в Пало Альто разработали новую технологию подающего механизма для копиров и принтеров. В устройстве AirJet разработчики скопировали поведение стаи термитов, где каждый термит принимает независимые решения, но при этом стая движется к общей цели, например, построению гнезда.

24 слайд

«Кожа без жертв» (Victimless Leather) - так назвали свою программу учёные из Университета Западной Австралии. В рамках программы эти ребята вырастили… сюртучок из живой человеческой кожи. Смысл программы состоит в том, чтобы научиться выращивать кожу для производства одежды и кожгалантереи.

25 слайд

  • Почти любая технологическая проблема, которая встает перед дизайнерами или инженерами, была уже давно успешно решена другими живыми существами.
    Например, производители прохладительных напитков постоянно ищут новые способы упаковки своей продукции. В то же время обычная яблоня давно решила эту проблему. Яблоко на 97% состоит из воды, упакованной отнюдь не в древесный картон, а в съедобную кожуру, достаточно аппетитную, чтобы привлечь животных, которые съедают фрукт и распространяют зерна.

26 слайд

Бионики многих стран работают над механизмом ориентации животных, раскрытие которого даст возможность человеку создать в технике принципиально новые навигационные системы

27 слайд

Возможно, развитие бионики уже в скором времени сделает многое непривычным в мире техники. И самые неожиданные сюрпризы ждут нас в разработке различных приборов обнаружения, методах добычи полезных ископаемых и производства веществ. А в технике – и этого ожидают- такие системы управления, куда будут « встроены» новые биологические машины.

Природа открывает перед инженерами и учеными бесконечные возможности по заимствованию технологий и идей!!!

Литература:

https://yandex.ru/images/search?pos=1&img_




Скачать

Рекомендуем курсы ПК и ППК для учителей

Вебинар для учителей

Свидетельство об участии БЕСПЛАТНО!