СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Тема: «Электромагнитные колебания. Колебательный контур.»

Категория: Физика

Нажмите, чтобы узнать подробности

Содержание: Основные понятия, определения, схемы, опыты.

Закрпление материала: решение задач.

Просмотр содержимого документа
«Тема: «Электромагнитные колебания. Колебательный контур.»»

Тема: «Электромагнитные колебания. Колебательный контур.» 11 класс

Тема: «Электромагнитные колебания. Колебательный контур.»

11 класс

Открытие электромагнитных колебаний Электромагнитные колебания – периодические изменения заряда, силы тока и напряжения в электрической цепи.

Открытие электромагнитных колебаний

  • Электромагнитные колебания – периодические изменения заряда, силы тока и напряжения в электрической цепи.
Прибор для наблюдения электромагнитных колебаний

Прибор для наблюдения электромагнитных колебаний

Электромагнитные колебания Определение: Электромагнитные колебания являются свободными , т.е. возникают при выведении колебательной системы из положения равновесия. Свободными называются колебания потому, что они совершаются без какого-либо внешнего воздействия — только за счёт энергии, запасённой в контуре. Определение : Вынужденные колебания возникают в системе под действием периодической вынуждающей силы. Частота вынужденных колебаний совпадает с частотой вынуждающей силы.

Электромагнитные колебания

  • Определение: Электромагнитные колебания являются свободными , т.е. возникают при выведении колебательной системы из положения равновесия.
  • Свободными называются колебания потому, что они совершаются без какого-либо внешнего воздействия — только за счёт энергии, запасённой в контуре.
  • Определение : Вынужденные колебания возникают в системе под действием периодической вынуждающей силы. Частота вынужденных колебаний совпадает с частотой вынуждающей силы.
Колебательный контур Простейшая система, в которой могут происходить свободные электромагнитные колебания – конденсатор и катушка, соединенные последовательно. Определение: Колебательный контур — это замкнутый контур, образованный последовательно соединенными конденсатором и катушкой.

Колебательный контур

Простейшая система, в которой могут происходить свободные электромагнитные колебания – конденсатор и катушка, соединенные последовательно.

Определение: Колебательный контур — это замкнутый контур, образованный последовательно соединенными конденсатором и катушкой.

Рассмотрим подробно все важные стадии процесса колебаний . Начальный момент: t = 0. Заряд конденсатора равен q0, ток через катушку отсутствует (рис. 1). Конденсатор сейчас начнёт разряжаться . Несмотря на то, что сопротивление катушки равно нулю, ток не возрастёт мгновенно. Как только ток начнёт увеличиваться, в катушке возникнет ЭДС самоиндукции, препятствующая возрастанию тока. Аналогия. Маятник оттянут вправо на величину x0 и в начальный момент отпущен. Начальная скорость маятника равна нулю.

Рассмотрим подробно все важные стадии процесса колебаний .

Начальный момент: t = 0. Заряд конденсатора равен q0, ток через катушку отсутствует (рис. 1). Конденсатор сейчас начнёт разряжаться .

Несмотря на то, что сопротивление катушки равно нулю, ток не возрастёт мгновенно. Как только ток начнёт увеличиваться, в катушке возникнет ЭДС самоиндукции, препятствующая возрастанию тока.

Аналогия. Маятник оттянут вправо на величину x0 и в начальный момент отпущен. Начальная скорость маятника равна нулю.

Первая четверть периода: 0 Увеличение тока происходит постепенно: вихревое электрическое поле катушки препятствует нарастанию тока и направлено против тока. Аналогия. Маятник движется влево к положению равновесия; скорость v маятника постепенно увеличивается. Деформация пружины x (она же — координата маятника) уменьшается.
  • Первая четверть периода: 0

Увеличение тока происходит постепенно: вихревое электрическое поле катушки препятствует нарастанию тока и направлено против тока.

Аналогия. Маятник движется влево к положению равновесия; скорость v маятника постепенно увеличивается. Деформация пружины x (она же — координата маятника) уменьшается.

Конец первой четверти : t = T/4. Конденсатор полностью разрядился. Сила тока достигла максимального значения I 0 (рис. 3). Сейчас начнётся перезарядка конденсатора. Напряжение на катушке равно нулю, но ток не исчезнет мгновенно. Как только ток начнёт уменьшаться, в катушке возникнет ЭДС самоиндукции, препятствующая убыванию тока. Аналогия. Маятник проходит положение равновесия. Его скорость достигает максимального значения v0. Деформация пружины равна нулю.
  • Конец первой четверти : t = T/4. Конденсатор полностью разрядился. Сила тока достигла максимального значения I 0 (рис. 3). Сейчас начнётся перезарядка конденсатора.

Напряжение на катушке равно нулю, но ток не исчезнет мгновенно. Как только ток начнёт уменьшаться, в катушке возникнет ЭДС самоиндукции, препятствующая убыванию тока.

Аналогия. Маятник проходит положение равновесия. Его скорость достигает максимального значения v0. Деформация пружины равна нулю.

Вторая четверть: T/4 Сила тока убывает постепенно: вихревое электрическое поле катушки, поддерживая убывающий ток, сонаправлено с током. Аналогия . Маятник продолжает двигаться влево — от положения равновесия к правой крайней точке. Скорость его постепенно убывает, деформация пружины увеличивается.

Вторая четверть: T/4

Сила тока убывает постепенно: вихревое электрическое поле катушки, поддерживая убывающий ток, сонаправлено с током.

Аналогия . Маятник продолжает двигаться влево — от положения равновесия к правой крайней точке. Скорость его постепенно убывает, деформация пружины увеличивается.

Конец второй четверти t = T/2. Конденсатор полностью перезарядился, его заряд опять равен q0 (но полярность другая). Сила тока равна нулю (рис. 5). Сейчас начнётся обратная перезарядка конденсатора. Аналогия. Маятник достиг крайней правой точки. Скорость маятника равна нулю. Деформация пружины максимальна и равна x0.

Конец второй четверти t = T/2. Конденсатор полностью перезарядился, его заряд опять равен q0 (но полярность другая). Сила тока равна нулю (рис. 5). Сейчас начнётся обратная перезарядка конденсатора.

Аналогия. Маятник достиг крайней правой точки. Скорость маятника равна нулю. Деформация пружины максимальна и равна x0.

Третья четверть: T/2 Аналогия . Маятник двигается обратно: от правой крайней точки к положению равновесия.

Третья четверть: T/2

Аналогия . Маятник двигается обратно: от правой крайней точки к положению равновесия.

Конец третьей четверти: t = 3T/4. Конденсатор полностью разрядился. Ток максимален и снова равен I0, но на сей раз имеет другое направление (рис. 7). Аналогия. Маятник снова проходит положение равновесия с максимальной скоростью v0, но на сей раз в обратном направлении.

Конец третьей четверти: t = 3T/4. Конденсатор полностью разрядился. Ток максимален и снова равен I0, но на сей раз имеет другое направление (рис. 7).

Аналогия. Маятник снова проходит положение равновесия с максимальной скоростью v0, но на сей раз в обратном направлении.

Четвёртая четверть: 3T/4 Аналогия. Маятник продолжает двигаться вправо — от положения равновесия к крайней левой точке.

Четвёртая четверть: 3T/4

Аналогия. Маятник продолжает двигаться вправо — от положения равновесия к крайней левой точке.

Конец четвёртой четверти и всего периода : t = T. Обратная перезарядка конденсатора завершена, ток равен нулю (рис. 9). Данный момент идентичен моменту t = 0, а данный рисунок — рисунку 1. Совершилось одно полное колебание. Сейчас начнётся следующее колебание, в течение которого процессы будут происходить точно так же, как описано выше.  Аналогия . Маятник вернулся в исходное положение.

Конец четвёртой четверти и всего периода : t = T. Обратная перезарядка конденсатора завершена, ток равен нулю (рис. 9).

Данный момент идентичен моменту t = 0, а данный рисунок — рисунку 1. Совершилось одно полное колебание. Сейчас начнётся следующее колебание, в течение которого процессы будут происходить точно так же, как описано выше.

Аналогия . Маятник вернулся в исходное положение.

Рассмотренные электромагнитные колебания являются незатухающими — они будут продолжаться бесконечно долго. Ведь мы предположили, что сопротивление катушки равно нулю! Точно так же будут незатухающими колебания пружинного маятника при отсутствии трения. В реальности катушка обладает некоторым сопротивлением. Поэтому колебания в реальном колебательном контуре будут затухающими. Так, спустя одно полное колебание заряд на конденсаторе окажется меньше исходного значения. Со временем колебания и вовсе исчезнут: вся энергия, запасённая изначально в контуре, выделится в виде тепла на сопротивлении катушки и соединительных проводов. Точно так же будут затухающими колебания реального пружинного маятника: вся энергия маятника постепенно превратится в тепло из-за неизбежного наличия трения.

Рассмотренные электромагнитные колебания являются незатухающими — они будут продолжаться бесконечно долго.

Ведь мы предположили, что сопротивление катушки равно нулю! Точно так же будут незатухающими колебания пружинного маятника при отсутствии трения.

В реальности катушка обладает некоторым сопротивлением. Поэтому колебания в реальном колебательном контуре будут затухающими.

Так, спустя одно полное колебание заряд на конденсаторе окажется меньше исходного значения. Со временем колебания и вовсе исчезнут: вся энергия, запасённая изначально в контуре, выделится в виде тепла на сопротивлении катушки и соединительных проводов.

Точно так же будут затухающими колебания реального пружинного маятника: вся энергия маятника постепенно превратится в тепло из-за неизбежного наличия трения.

Конденсатор имеет ёмкость C, индуктивность катушки равна L. Поскольку тепловых потерь нет, энергия из контура не уходит: она постоянно перераспределяется между конденсатором и катушкой. Возьмём момент времени, когда заряд конденсатора максимален и равен q0, а ток отсутствует. Энергия магнитного поля катушки в этот момент равна нулю. Вся энергия W контура сосредоточена в конденсаторе:

Конденсатор имеет ёмкость C, индуктивность катушки равна L. Поскольку тепловых потерь нет, энергия из контура не уходит: она постоянно перераспределяется между конденсатором и катушкой.

Возьмём момент времени, когда заряд конденсатора максимален и равен q0, а ток отсутствует. Энергия магнитного поля катушки в этот момент равна нулю. Вся энергия W контура сосредоточена в конденсаторе:

Теперь, наоборот, рассмотрим момент, когда ток максимален и равен I 0 , а конденсатор раз- ряжен. Энергия конденсатора равна нулю. Вся энергия контура запасена в катушке: В произвольный момент времени, когда заряд конденсатора равен q и через катушку течёт ток I, энергия контура равна:

Теперь, наоборот, рассмотрим момент, когда ток максимален и равен I 0 , а конденсатор раз- ряжен. Энергия конденсатора равна нулю. Вся энергия контура запасена в катушке:

В произвольный момент времени, когда заряд конденсатора равен q и через катушку течёт ток I, энергия контура равна:

Период электромагнитных колебаний

Период электромагнитных колебаний

Соответствие между механическими и электромагнитными колебаниями можно свести в таблицу.

Соответствие между механическими и электромагнитными колебаниями можно свести в таблицу.

Закрепление материала Катушку какой индуктивности надо включить в колебательный контур, чтобы при емкости конденсатора 50 пФ получить частоту свободных колебаний 10 МГц? Каков диапазон частот собственных колебаний в контуре, если его индуктивность можно изменять в пределах от 0,1 до 10 мкГн, а емкость — в пределах от 50 до 5000 пФ? При увеличении емкости конденсатора колебательного контура на 0,08 мкФ частота колебаний уменьшилась в 3 раза. Найти первоначальную емкость конденсатора. Индуктивность катушки осталась прежней.

Закрепление материала

  • Катушку какой индуктивности надо включить в колебательный контур, чтобы при емкости конденсатора 50 пФ получить частоту свободных колебаний 10 МГц?
  • Каков диапазон частот собственных колебаний в контуре, если его индуктивность можно изменять в пределах от 0,1 до 10 мкГн, а емкость — в пределах от 50 до 5000 пФ?
  • При увеличении емкости конденсатора колебательного контура на 0,08 мкФ частота колебаний уменьшилась в 3 раза. Найти первоначальную емкость конденсатора. Индуктивность катушки осталась прежней.
Закрепление материала Во сколько раз изменится частота собственных колебаний в колебательном контуре, если емкость конденсатора увеличить в 25 раз, а индуктивность катушки уменьшить в 16 раз? В колебательном контуре индуктивность катушки равна 0,2 Гн, а амплитуда колебаний силы тока 40 мА. Найти энергию электрического поля конденсатора и магнитного поля катушки в тот момент, когда мгновенное значение силы тока в 2 раза меньше амплитудного значения.

Закрепление материала

  • Во сколько раз изменится частота собственных колебаний в колебательном контуре, если емкость конденсатора увеличить в 25 раз, а индуктивность катушки уменьшить в 16 раз?
  • В колебательном контуре индуктивность катушки равна 0,2 Гн, а амплитуда колебаний силы тока 40 мА. Найти энергию электрического поля конденсатора и магнитного поля катушки в тот момент, когда мгновенное значение силы тока в 2 раза меньше амплитудного значения.
Домашнее задание Параграф 27-30 Г. Я. Мякишев.

Домашнее задание

  • Параграф 27-30 Г. Я. Мякишев.


Скачать

Рекомендуем курсы ПК и ППК для учителей

Вебинар для учителей

Свидетельство об участии БЕСПЛАТНО!