Тема урока "Термоядерная реакция. Источники энергии Солнца и звезд"
Термоядерная реакция — это реакция синтеза легких ядер в более тяжелые ядра.
Для ее осуществления необходимо, чтобы исходные нуклоны или легкие ядра сблизились до расстояний, равных или меньших радиуса сферы действия ядерных сил притяжения (т.е. до расстояний порядка 10–15 м). Такому взаимному сближению ядер препятствуют кулоновские силы отталкивания, действующие между положительно заряженными ядрами.
Для возникновения реакции синтеза необходимо нагреть вещество большой плотности до сверхвысоких температур (порядка сотен миллионов кельвин), чтобы кинетическая энергия теплового движения ядер оказалась достаточной для преодоления кулоновских сил отталкивания.
При таких температурах вещество существует в виде плазмы.
Поскольку синтез может происходить только при очень высоких температурах, то ядерные реакции синтеза и получили название термоядерных реакций (от греческого«Терма» — тепло, жар).
При деление тяжелых ядер может выделяться энергия.
В случае с легкими ядрами энергия может выделяться при обратном процессе — при их синтезе.
Причем реакция синтеза легких ядер энергетически более выгодна, чем реакция деления тяжелых (если сравнивать выделившуюся энергию, приходящуюся на один нуклон).
Таким образом, в термоядерных реакциях выделяется огромная энергия. Например, в реакции синтеза дейтерия с образованием
выделяется 3,2 МэВ. В реакции синтеза дейтерия с образованием трития выделяется порядка 4 МэВ, а в реакции синтеза дейтерия и трития выделяется около17,6 МэВ энергии.
Самоподдерживающиеся термоядерные реакции происходят в недрах звезд (в том числе Солнца) и играют важнейшую роль в существовании и развитии Вселенной.
На Земле первая термоядерная реакция была осуществлена при взрыве водородной бомбы. Высокую температуру, необходимую для начала термоядерной реакции, в водородной бомбе получали в результате взрыва входящей в ее состав атомной бомбы, играющей роль детонатора, а термоядерным горючим являлся дейтерий. Сначала в водородной бомбе взрывается атомная бомба. Этот взрыв сопровождается резким ростом температуры, а также возникновением потока нейтронов. Нейтроны вступают в реакцию с изотопом лития, образуют тритий, затем инициируется термоядерная реакция, которая дает основное выделение энергии.
Термоядерные реакции, происходящие при взрывах водородных бомб, являются неуправляемыми. Если бы в земных условиях была возможность осуществлять легко управляемые термоядерные реакции, человечества получило бы практически неисчерпаемый источник энергии, так как запасы водорода на Земле огромны.
Однако на пути осуществления энергетически выгодных управляемых термоядерных реакций стоят большие технические трудности. Прежде всего, необходимо создавать температуры порядка 108 К. Только при такой температуре газ почти полностью ионизируется, превращаясь в плазму, в которой и происходит синтез ядер. Такие сверхвысокие температуры могут быть получены путем создания в плазме электрических разрядов большой мощности. Также, для удержания плазмы, необходимо создание очень сильных магнитных полей.
Этот метод используют в установках типа "Токамак", впервые созданных в Институте атомной энергии имени Курчатова.
Пока удалось получать плазму с температурой 1,3×107 К и удерживать ее в течение 60 — 80 мс на установке "Токамак-10". Для увеличения продолжительности существования управляемой термоядерной реакции необходимо увеличивать размеры установки, поэтому в настоящее время строится новая большая установка "Токамак-20".
Хотя уже сейчас, говорят, что группе китайских ученых удалось стабилизировать плазму на рекордные 30 секунд. Осуществить это позволило усовершенствование Токмака EAST в городе Хэфей, который и использовался для эксперимента.
Благодаря термоядерным реакциям, протекающим в недрах Солнца, выделяется энергия, дающий жизнь обитателям Земли. Солнце излучает в пространство свет и тепло уже почти 4,6 миллиарда лет.
Предположение о том, что выделение энергии на Солнце происходит в результате протекания на нем термоядерных реакций, было высказано в 1939 г. американским физиком Хансом Бете. Именно за это Бете получил Нобелевскую премию в 1967 году.
Чтобы представить, какое колоссальное количество энергии теряет Солнце в результате превращения водорода в гелий, достаточно знать, что масса Солнца ежесекундно уменьшается на несколько миллионов тонн.
Но, несмотря на потери, запасов водорода на Солнце должно хватить еще на 5 — 6 миллиардов лет.
Основные выводы:
– Термоядерная реакция — это реакция синтеза легких ядер в более тяжелые ядра.
– Плазма — это частично или полностью ионизированный газ, образованный из нейтральных атомов и заряженных частиц.
– Самоподдерживающиеся термоядерные реакции происходят в недрах звезд и играют важнейшую роль в существовании и развитии Вселенной.
– Если бы в земных условиях была возможность осуществлять легко управляемые термоядерные реакции, человечества получило бы практически неисчерпаемый источник энергии.
Ответьте на вопросы
1. В чем заключается суть термоядерных реакций?
2. Какие реакции протекают в недрах Солнца и других звезд?
3. Кто из ученых изучал процессы, происходящие на Солнце и других звездах?
4 Почему в земных условиях нет возможности осуществлять легко управляемые термоядерные реакции?
5. Что такое плазма?