Лабораторная работа №4
Тема: Практическое изучение устройства приборов сцепления и коробок передач автомобилей зарубежного производства. Определение основных неисправностей и способы их устранения. Особенности автоматических коробок передач.
Цель работы: Практически изучить устройство приборов сцепления и коробок передач автомобилей зарубежного производства. Определение основных неисправностей и способы их устранения. Изучить особенности автоматических коробок передач.
Сцепление является важным конструктивным элементом трансмиссии автомобиля.

Сцепление предназначено для кратковременного отсоединения двигателя от трансмиссии и плавного их соединения при переключении передач, а также предохранения элементов трансмиссии от перегрузок. Сцепление автомобиля располагается между двигателем и коробкой передач.
В зависимости от конструкции различают следующие типы сцепления:
фрикционное сцепление;
гидравлическое сцепление;
электромагнитное сцепление.
Фрикционное сцепление передает крутящий момент за счет сил трения. В гидравлическом сцеплении связь обеспечивается за счет потока жидкости. Электромагнитное сцепление управляется магнитным полем.
Самым распространенным типом сцепления является фрикционное сцепление. По виду фрикционное сцепление различается:
однодисковое сцепление;
двухдисковое сцепление;
многодисковое сцепление.
На современных автомобилях устанавливается в основном сухое однодисковое сцепление.
Однодисковое сцепление имеет следующее устройство:
маховик; картер сцепления; нажимной диск; ведомый диск; диафрагменная пружина; подшипник выключения сцепления; муфта выключения; вилка сцепления
Схема однодискового сцепления

Маховик устанавливается на коленчатом вале двигателя. Он выполняет роль ведущего диска. На современных автомобилях применяется, как правило, двухмассовый маховик. Такой маховик состоит из двух частей, соединенных пружинами. Одна часть соединена с коленчатым валом, другая - с ведомым диском. Конструкция двухмассового маховика обеспечивает сглаживание рывков и вибраций коленчатого вала.
В картере сцепления размещаются конструктивные элементы сцепления. Картер сцепления крепиться болтами к двигателю.
Нажимной диск (обиходное название - корзина сцепления) прижимает ведомый диск к маховику и при необходимости освобождает его от давления. Он оснащен диафрагменной пружиной. Диафрагменная пружина представляет собой металлические упругие лепестки, закрепленные по окружности нажимного диска. Ведомый диск располагается между маховиком и нажимным диском. Ступица ведомого диска соединяется шлицами с первичным валом коробки передач и может перемещаться по ним. На ведомом диске с двух сторон установлены фрикционные накладки. Для обеспечения плавности включения сцепления в ступице ведомого диска размещены демпферные пружины. Подшипник выключения сцепления (обиходное название - выжимной подшипник) воздействует на лепестки диафрагменной пружины. Подшипник располагается на муфте выключения. Перемещение муфты с подшипником обеспечивает вилка сцепления.
Работу сцепления обеспечивает привод сцепления.
Схема двухдискового сцепления

На грузовых и ряде мощных легковых автомобилях применяется двухдисковое сцепление. Двухдисковое сцепление осуществляет передачу большего крутящего момента при неизменном размере, а также обеспечивает больший ресурс конструкции. Это достигнуто за счет применения двух ведомых дисков, между которыми установлена проставка. В результате получены четыре поверхности трения.

Механическая коробка передач относится к ступенчатым коробкам, т.е. крутящий момент в ней изменяются ступенями. Ступенью (или передачей) называется пара взаимодействующих шестерен. Каждая из ступеней обеспечивает вращение с определенной угловой скоростью или, другими словами, имеет свое передаточное число.
Передаточным числом называется отношение числа зубьев ведомой шестерни к числу зубьев ведущей шестерни. Разные ступени коробки передач имеют разные передаточные числа. Низшая ступень имеет наибольшее передаточное число, высшая ступень – наименьшее.
В зависимости от числа ступеней различают следующие конструкции:
четырехступенчатая коробка передач;
пятиступенчатая коробка передач;
шестиступенчатая коробка передач;
и выше.
Наибольшее распространение на современных автомобилях получила пятиступенчатая коробка передач.
Из всего многообразия конструкций МКПП можно выделить коробки двух основных видов:
трехвальная коробка передач; двухвальная коробка передач.
Трехвальная коробка передач устанавливается, как правило, на заднеприводные автомобили. Двухвальная механическая коробка передач применяется на переднеприводных легковых автомобилях. Устройство и принцип работы данных коробок передач имеют существенные различия, поэтому они рассмотрены отдельно.
Устройство трехвальной механической коробка передач
Трехвальная коробка передач имеет следующее устройство:
ведущий (первичный) вал;
шестерня ведущего вала;
промежуточный вал;
блок шестерен промежуточного вала;
ведомый (вторичный) вал;
блок шестерен ведомого вала;
муфты синхронизаторов;
механизм переключения передач;
картер (корпус) коробки передач.
Устройство двухвальной механической коробки передач
Двухвальная коробка передач имеет следующее устройство:
ведущий (первичный) вал;
блок шестерен ведущего вала;
ведомый (вторичный) вал;
блок шестерен ведомого вала;
муфты синхронизаторов;
главная передача;
дифференциал;
механизм переключения передач;
картер коробки передач.
Схема двухвальной механической коробки передач
Ведущий вал, также как и в трехвальной коробке, обеспечивает соединение со сцеплением. На валу жестко закреплен блок шестерен.
Механизм переключения передач двухвальной коробки имеет следующее устройство: рычаг управления; трос выбора передач; рычаг выбора передач;
трос включения передач; рычаг включения передач; центральный шток переключения передач с вилками; блокирующее устройство.
Роботизированная коробка передач DSG (Direct Shift Gearbox) является в настоящее время самой совершенной автоматизированной коробкой, устанавливаемой на массовые модели легковых автомобилей.

Коробка DSG обеспечивает переключение передач без разрыва потока мощности, что значительно повышает ее потребительские качества по сравнению с другими «роботами». Непрерывная передача крутящего момента от двигателя к ведущим колесам достигнута за счет применения двух сцеплений и соответствующих им двух рядов передач. Коробка передач DSG имеет шестиступенчатую и семиступенчатую конструкции. Семиступенчатая коробка (крутящий момент до 250 нм) устанавливается на легковые автомобили B, C и некоторые модели D класса.
Шестиступенчатая коробка передач передает крутящий момент до 350 нм и устанавливается на более мощных машинах.
Коробка передач DSG имеет следующее устройство:
двойное сцепление; первый ряд передач; второй ряд передач; главная передача; дифференциал; система управления коробкой передач; корпус (картер) коробки.
Схема роботизированной коробки передач DSG
Двойное сцепление обеспечивает передачу крутящего момента на первый и второй ряды передач. Сцепление включает ведущий диск, соединенный через входную ступицу с маховиком, и две фрикционные многодисковые муфты, связанные через главную ступицу с рядами передач.
На шестиступенчатой коробке передач двойное сцепление «мокрого» типа, т.е. постоянно находится в масле. Семиступенчатая коробка имеет сухое сцепление, что позволяет значительно уменьшить объем заправляемого масла (с 6.5 л до 1.7 л), снизить энергозатраты и повысить топливную экономичность двигателя. С этой же целью на семиступенчатой коробке масляный насос с гидравлическим приводом заменен на более экономичный электрический насос.
Первый ряд коробки обеспечивает работу нечетных передач и заднего хода, второй ряд отвечает за четные передачи. Каждый из рядов передач представляет собой первичный и вторичный валы с блоками шестерен. Первичные валы расположены соосно, при этом первичный вал второго ряда выполнен полым и надет на первичный вал первого ряда.
Шестерни на первичных валах имеют жесткое соединение с валом. Шестерни вторичных валов вращаются свободно. При этом шестерни первичного и вторичного валов находятся в постоянном зацеплении. Между шестернями вторичного вала расположены муфты синхронизаторов, которые осуществляют включение конкретной передачи. Для выполнения реверсивного движения в коробке
передач предусмотрен промежуточный вал с шестерней заднего хода. На вторичных валах также расположены ведущие шестерни главной передачи.
Для управления сцеплением и переключения передач предназначена система управления коробкой передач. Система управления включает:
входные датчики; электронный блок управления; электрогидравлический блок управления; исполнительные механизмы.
Электронный и электрогидравлический блоки управления, а также практически все входные датчики, объединены в единый модуль, имеющий название Mechatronic. Модуль управления располагается непосредственно в картере коробки передач.
Электрогидравлический блок управления обеспечивает работу гидравлического контура управления коробкой передач. В него входят следующие элементы: золотники-распределители; электромагнитные клапана; клапана регулирования давления; мультиплексор.
Автоматическая коробка передач (сокращенное название АКПП, обиходное название – коробка-автомат) является самым распространенным устройством изменения крутящего момента, применяемым в автоматической трансмиссии автомобиля. Традиционно автоматической называют гидромеханическую коробку передач.

Автоматическая коробка передач имеет следующее устройство:
гидротрансформатор; механическая коробка передач; насос рабочей жидкости; система охлаждения рабочей жидкости; система управления.
Гидротрансформатор предназначен для передачи и изменения крутящего момента от двигателя к механической коробке передач. Конструкция гидротрансформатора включает:
насосное колесо; турбинное колесо; реакторное колесо; блокировочная муфта; муфта свободного хода; корпус гидротрансформатора.
Насосное колесо соединено с коленчатым валом двигателя. Турбинное колесо связано с механической коробкой передач. Между насосным и турбинным колесами располагается неподвижное реакторное колесо. Все колеса гидротрансформатора оснащены лопастями определенной формы, между которыми предусмотрены каналы для прохода рабочей жидкости.
Блокировочная муфта служит для блокировки гидротрансформатора в определенных режимах работы автомобиля. Муфта свободного хода (обгонная муфта) обеспечивает вращение жестко закрепленного реакторного колеса в противоположную сторону.
Все конструктивные элементы гидротрансформатора расположены в корпусе, который заполнен специальной рабочей жидкостью.
Блокировка гидротрансформатора происходит с дальнейшим ростом скорости, при этом замыкается блокирующая муфта, и передача крутящего момента от двигателя к механической коробке передач происходит напрямую.
Механическая коробка передач в составе АКПП служит для ступенчатого изменения крутящего момента, а также обеспечивает движение автомобиля задним ходом. На автоматических коробках, как правило, применяются планетарные редукторы, отличающиеся компактностью и возможностью соосной работы. Механическая коробка передач состоит из нескольких (обычно двух) планетарных редукторов, соединенных последовательно для совместной работы. Объединение планетарных редукторов позволяет обеспечить необходимое число ступеней работы. Современные автоматические коробки выполняются шестиступенчатыми, семиступенчатыми (Mercedes) и даже восьмиступенчатыми (Lexus).
Планетарный редуктор в коробке передач имеет название планетарный ряд. Планетарный ряд имеет следующее устройство: солнечная шестерня; сателлиты;
коронная шестерня; водило.
Схема автоматической коробки передач
Таким образом, механизмами переключения передач в автоматической коробке являются фрикционные муфты и тормоза. Работа АКПП заключается в выполнении определенного алгоритма включения и выключения муфт и тормозов.
Циркуляцию рабочей жидкости в автоматической коробке передач осуществляет шестеренный насос. Насос приводится в действие от ступицы гидротрансформатора.
Охлаждение рабочей жидкости в АКПП производит соответствующая система. Рабочая жидкость может охлаждаться в охладителе (теплообменнике), включенном в систему охлаждения двигателя. Ряд конструкций коробок имеет отдельный радиатор рабочей жидкости.
На современных автоматических коробках передач применяется электронная система управления, которая включает следующие конструктивные элементы:
входные датчики; электронный блок управления коробкой передач; распределительный модуль; рычаг селектора.
В системе применяются следующие датчики:
-частоты вращения на входе коробки передач;
-частоты вращения на выходе коробки передач;
-температуры рабочей жидкости;
-положения рычага селектора;
-положения педали газа.
Вариатор (обиходное название – вариаторная коробка передач) является бесступенчатой коробкой передач, т.е. обеспечивает в заданном диапазоне плавное изменение передаточного числа.
Основное преимущества вариатора по сравнению с другими коробками заключается в эффективном использовании мощности двигателя за счет оптимального согласования нагрузки на автомобиль с оборотами коленчатого вала, тем самым достигается высокая топливная экономичность.
Вариаторная коробка передач имеет общепризнанное название (аббревиатуру) CVT – Continuously Variable Transmission (в переводе – постоянно изменяющаяся трансмиссия). Ввиду ограничений по мощности вариаторы на сегодняшний день применяются только на легковых автомобилях, правда диапазон их использования вследствие технического прогресса постоянно расширяется.
Вариаторная коробка передач имеет следующее общее устройство:
механизм, обеспечивающий разъединение коробки передач от двигателя (нейтральное положение коробки передач);
собственно вариатор (вариаторная передача);
механизм, обеспечивающий движение задним ходом;
система управления.
Для разъединения вариатора от двигателя использоваться следующие механизмы:
центробежное автоматическое сцепление (вариатор Transmatic);
электромагнитное сцепление с электронным управлением (вариатор Hyper на автомобилях Nissan);
многодисковое мокрое сцепление с электронным управлением (вариатор Multitronic на автомобилях Audi, вариаторы на автомобилях Honda);
гидротрансформатор (вариатор Ecotronic на автомобилях Ford, вариатор Extroid на автомобилях Nissan, вариатор Lineartronic на автомобилях Subaru).
Из всего многообразия различных видов вариаторов на автомобилях нашли применение только два вида:
клиноременный вариатор;
тороидный вариатор.