СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Виды воhttps://otkritkiok.ru/den-rozhdeniya/zhenshchine/s-dnem-rojdeniya-jelaiuпросов к решению неравенства

Категория: Математика

Нажмите, чтобы узнать подробности

какими могут быть вопросы и задания, кроме "решить неравенство" ЧТО ТО ПОШЛО НЕ ТАК!!!!  ИЗВИНИТЕ

Просмотр содержимого документа
«Виды воhttps://otkritkiok.ru/den-rozhdeniya/zhenshchine/s-dnem-rojdeniya-jelaiuпросов к решению неравенства»

Муниципальное общеобразовательное учреждение

«Средняя общеобразовательная школа №3 г. Балашова Саратовской области»

РАССМОТРЕНО

Руководитель ШМО

________ Н.А.Могилатова

Протокол №_от« » 2014г.

 

СОГЛАСОВАНО

Заместитель директора по УВР

_________Л.И.Максимова

Протокол №_ от « » 2014г.

УТВЕРЖДЕНО

Директор МОУ СОШ №3 ________Л.А.Зенкевич                 

Приказ №_ от « » 2014г.

 



 

РАБОЧАЯ  ПРОГРАММА

по математике

8 класс

(индивидуальное обучение на дому)

 

 

Разработана

учителем математики

Могилатовой Н.А. 




























2014 - 2015 учебный год




Пояснительная записка

Данная рабочая программа составлена на основе следующих нормативно - правовых документов:

-Федеральный закон от 29 декабря 2012 г. №273-ФЗ «Об образовании в Российской Федерации»;

- федеральный компонент государственного стандарта среднего (полного) общего образования на базовом и профильном уровне (пр.министерства образования РФ №1089 от 05.03.2004г.).

- Приказ Министерства здравоохранения и социального развития РФ от 26 августа 2010 г. № 761н "Об утверждении Единого квалификационного справочника должностей руководителей, специалистов и служащих, раздел "Квалификационные характеристики должностей работников образования"

- примерная программа   основного общего образования по математике,

- авторская программа: Алгебра 7 – 9 классы. / авт.- сост. И.И. Зубарева, А.Г. Мордкович. – 2-е изд., испр. и  доп. – М.: Мнемозина, 2011г.

- программа для общеобразовательных учреждений авторов Л.С. Атанасяна, В.Ф. Бутузова, С.Б. Кадомцева.

- федеральный перечень учебников, рекомендованных Министерством образования Российской Федерации к использованию в образовательном процессе в общеобразовательных учреждениях на 2014-2015 учебный год (приказ от 31 марта 2014 года №253 )

-Основная образовательная программа МОУ СОШ № 3

- Учебный план ОУ  МОУ СОШ № 3 на 2014-2015 учебный год

-положение о рабочей программе педагога МОУ СОШ № 3 г.Балашова

Рабочая программа курса математики для 8 класса (базовый уровень) ориентирована на использование учебников «Алгебра 8» А.Г. Мордкович и задачника « Алгебра 8» А. Г. Мордкович, Т. Н. Мишустина, Е .Е . Тульчинская, «Мнемозина», 2010. «Геометрия 7 – 9»: Учеб. для общеобразоват. учреждений/ Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. – М.: Просвещение, 2010

Место предмета в федеральном базисном учебном плане: согласно федеральному базисному учебному плану для образовательных учреждений Российской Федерации рабочая программа рассчитана на 87,5 часов, 2,5 часа в неделю. Всего плановых контрольных работ 9.

Предлагаемая программа составлена таким образом, чтобы обучение математике осуществлялось на доступном уровне категории школьников с ограниченными возможностями здоровья в общеобразовательной школе, находящихся на индивидуальной форме обучения на дому.

Цели:

  • овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;

  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

  • воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.





Задача образовательного процесса: обеспечить усвоение учащимися обязательного минимума содержания на основе требований государственного образовательного стандарта.

Цели обучения математики в общеобразовательной школе определяются ее ролью в развитии общества в целом и формировании личности каждого отдельного человека. Алгебра нацелена на формирование математического аппарата для решения задач из математики и смежных предметов (физика, химия, основы информатики и вычислительной техники и др.).

Курс алгебры построен в соответствии с традиционными содержательно-методическими линиями: числовой, функциональной, алгоритмической, уравнений и неравенств, алгебраических преобразований. В курсе алгебры 8-го класса продолжается применение формул сокращенного умножения в преобразованиях дробных выражений. Главное место занимают алгоритмы действий с дробями. Формируются понятия иррационального числа на множестве действительных чисел, арифметического квадратного корня. Особое внимание уделяется преобразованиям выражений, содержащих квадратные корни. Даются первые знания по решению уравнений вида , где , по формуле корней, что позволяет существенно расширить аппарат уравнений, используемый для решения текстовых задач. Продолжается изучение числовых неравенств, на которых основано решение линейных неравенств с одной переменной. Вводится понятие о числовых промежутках. Изучаются свойства функций , при и , и . Выявляется связь функции с функцией , где . Серьезное внимание уделяется формированию умений рассуждать, делать простые доказательства, давать обоснования выполняемых действий. Параллельно закладываются основы для изучения систематических курсов стереометрии, физики, химии и других смежных предметов.

Геометрия – один из важнейших компонентов математического образования, необходимая для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания учащихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.

В курсе геометрии 8-го класса продолжается решение задач на признаки равенства треугольников, но в совокупности с применением новых теоретических факторов. Теореме о сумме углов выпуклого многоугольника позволяет расширить класс задач. Формируется практические навыки вычисления площадей многоугольников в ходе решения задач. Особое внимание уделяется применению подобия треугольников к доказательствам теорем и решению задач. Даются первые знания о синусе, косинусе и тангенсе острого угла прямоугольного треугольника. Даются учащимся систематизированные сведения об окружности и её свойствах, вписанной и описанной окружностях. Серьезное внимание уделяется формированию умений рассуждать, делать простые доказательства, давать обоснования выполняемых действий. Параллельно закладываются основы для изучения систематических курсов стереометрии, физики, химии и других смежных предметов.

Планируется использование следующих педагогических технологий в преподавании предмета:

Здоровьесберегающие технологии, направленные на сохранение и укрепление здоровья обучающихся и их психическую поддержку, ИКТ, дифференцируемое обучение,

В течение года возможны коррективы рабочей программы, связанные с объективными причинами.






Содержание тем учебного курса


Повторение курса 7-го класса

Алгебраические дроби

Основное свойство дроби, сокращение дробей. Сложение и вычитание алгебраических дробей. Умножение и деление алгебраических дробей. Возведение алгебраической дроби в степень. Преобразование рациональных выражений. Первые представления о решении рациональных уравнений. Степень с рациональным показателем.

Основная цель – выработать умение выполнять преобразования алгебраических дробей. Изучение темы начинается с введения понятия алгебраической дроби, её числового значения и допустимых значений, входящих в неё букв.

Многоугольники

Многоугольник, выпуклый многоугольник, четырехуголь­ник. Параллелограмм, его свойства и признаки. Трапеция. Пря­моугольник, ромб, квадрат, их свойства. Осевая и центральная симметрии.

Цель: изучить наиболее важные виды четы­рехугольников — параллелограмм, прямоугольник, ромб, квад­рат, трапецию; дать представление о фигурах, обладающих осе­вой или центральной симметрией.

Доказательства большинства теорем данной темы и решения многих задач проводятся с помощью признаков равенства треугольников, поэтому полезно их повторить, в начале изучения темы.

Осевая и центральная симметрии вводятся не как преобразо­вание плоскости, а как свойства геометрических фигур, в част­ности четырехугольников. Рассмотрение этих понятий как дви­жений плоскости состоится в 9 классе.

Функция у=. Свойства квадратного корня

Рациональные числа. Понятие квадратного корня из неотрицательного числа. Иррациональные числа. Множество действительных чисел. Свойства числовых неравенств. Функция у=, её свойства и график. Свойства квадратных корней. Преобразование выражений, содержащих операцию извлечения квадратного корня. Алгоритм извлечения квадратного корня. Модуль действительного числа. График функции у=, формула .

Основная цель – систематизировать сведения о рациональных числах, ввести понятие иррационального и действительного чисел. Научить выполнять простейшие преобразования выражений, содержащих квадратные корни.

Площади

Понятие площади многоугольника. Площади прямоуголь­ника, параллелограмма, треугольника, трапеции. Теорема Пи­фагора.

Цель: расширить и углубить полученные в 5—6 классах представления обучающихся об измерении и вычисле­нии площадей; вывести формулы площадей прямоугольника, па­раллелограмма, треугольника, трапеции; доказать одну из глав­ных теорем геометрии — теорему Пифагора.

Вывод формул для вычисления площадей прямоугольника, параллелограмма, треугольника, трапеции основывается на двух основных свойствах площадей, которые принимаются исходя из наглядных представлений, а также на формуле площади квад­рата, обоснование которой не является обязательным для обучающихся.

Нетрадиционной для школьного курса является теорема об от­ношении площадей треугольников, имеющих по равному углу. Она позволяет в дальнейшем дать простое доказательство призна­ков подобия треугольников. В этом состоит одно из преимуществ, обусловленных ранним введением понятия площади. Доказательство теоремы Пифагора основывается на свойствах площадей и формулах для площадей квадрата и прямоугольника. Доказывается также теорема, обратная теореме Пифагора.

Квадратичная функция. Функция у=k

Функция у=kх2, её свойства и график. Функция у=k/х, её свойства и график. Как построить график функции у=f(х+l)+m, если известен график функции у=f(х). Функция у=ах2+bх+с, её свойства и график. Графическое решение квадратных уравнений. Дробно-линейная функция, её свойства и график. Как построить графики функций у=│f(х)│и у=f│х│, если известен график функции у=f(х).

Основная цель – научить строить график функции обратной пропорциональности, применять свойства функции при решении упражнений. В данной теме рассматриваются упражнения на свойства и график функции и на построение графика функции y = f(x + m) + n, если известен график функции y = f(x).

Подобные треугольники

Подобные треугольники. Признаки подобия треугольников. Применение подобия к доказательству теорем и решению задач. Синус, косинус и тангенс острого угла прямоугольного треуголь­ника.

Цель: ввести понятие подобных треугольни­ков; рассмотреть признаки подобия треугольников и их применения; сделать первый шаг в освоении учащимися тригонометриче­ского аппарата геометрии.

Определение подобных треугольников дается не на основе преобразования подобия, а через равенство углов и пропорцио­нальность сходственных сторон.

Признаки подобия треугольников доказываются с помощью теоремы об отношении площадей треугольников, имеющих по равному углу.

На основе признаков подобия доказывается теорема о средней линии треугольника, утверждение о точке пересечения медиан треугольника, а также два утверждения о пропорциональных отрезках в прямоугольном треугольнике. Дается представление о методе подобия в задачах на построение.

В заключение темы вводятся элементы тригонометрии — синус, косинус и тангенс острого угла прямоугольного треугольника.

Квадратные уравнения

Основные понятия, связанные с квадратными уравнениями. Формулы корней квадратных уравнений. Теорема Виета. Разложение квадратного трёхчлена на линейные множители. Рациональные уравнения как математические модели реальных ситуаций.

Основная цель – выработать умения решать квадратные уравнения, уравнения, сводящиеся к квадратным уравнениям, и применять их к решению задач. В данной теме рассматриваются примеры решения уравнений с параметрами.

Окружность

Взаимное расположение прямой и окружности. Касательная к окружности, ее свойство и признак. Центральные и вписанные углы. Четыре замечательные точки треугольника. Вписанная и описанная окружности.

Цель: расширить сведения об окружности, полученные учащимися в 7 классе; изучить новые факты, связанные с окружностью; познакомить обучающихся с четырьмя заме­чательными точками треугольника.

В данной теме вводится много новых понятий и рассматривается много утверждений, связанных с окружностью. Для их усвоения следует уделить большое внимание решению задач.

Утверждения о точке пересечения биссектрис треугольника и точке пересечения серединных перпендикуляров к сторонам треугольника выводятся как следствия из теорем о свойствах биссектрисы угла и серединного перпендикуляра к отрезку. Теорема о точке пересечения высот треугольника (или их продолжений) доказывается с помощью утверждения о точке пересечения серединных перпендикуляров.

Наряду с теоремами об окружностях, вписанной в треуголь­ник и описанной около него, рассматриваются свойство сторон описанного четырехугольника и свойство углов вписанного че­тырехугольника.

Неравенства

Линейные неравенства. Квадратные неравенства. Доказательство неравенств. Приближённые вычисления. Стандартный вид положительного числа.

Основная цель – сформировать умение решать неравенства первой степени с одной переменной и квадратные неравенства с помощью графика квадратичной функции и методом интервалов.

Действительные числа.

Основная цель – познакомить учащихся с понятием погрешности приближения как показателем точности и качества приближения, выработать умение решать уравнения, содержащие знак модуля, строить и преобразовывать графики функции, содержащих знак модуля. В данной теме рассматриваются свойства степени с отрицательным целым показателем, стандартный вид числа.

Итоговое повторение

Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс 8 класса.




























Учебно-тематический план:


№ темы

Название темы

Количество часов

Количество

к/р

1.

Повторение курса 7 класса

2

1

2.

Алгебраические дроби

10

1

3.

Многоугольники

6

1

4.

Функция у=√х.

Свойства квадратного корня

8

1

5.

Площади

9

1

6.

Квадратичная функция .Функция у = k/х


3


7.

Подобные треугольники

11

1

8.

Квадратные уравнения

10

1

9.

Окружность

6


10

Неравенства

13

1

11

Итоговое повторение

7

1

12

Резерв

2,5



Итого

87,5

9





























Требования

к уровню подготовки учащихся, обучающихся по данной программе

В результате изучения курса алгебры 8 класса обучающиеся должны:

знать: Определение алгебраической дроби, основное свойства дроби, правила сложения, вычитания, умножения и деления дробей. Определение квадратичной функции, функции у = , функции у = х, их свойства. Определение квадратного уравнения, алгоритм решения квадратных, биквадратных уравнений, теорему Виета. Определение рационального, иррационального, действительного чисел. Определение числового неравенства, свойства числовых неравенств.

уметь: Приводить алгебраические дроби к одному знаменателю, выполнять тождественные преобразования. Строить графики квадратичной функции, функции у=√х. Извлекать квадратные корни из неотрицательного числа. Раскладывать квадратный трёхчлен на множители, решать полное и неполное квадратное уравнение с помощью дискриминанта, или по теореме Виета. Решать простейшие уравнения с модулем. Решать квадратные неравенства.

владеть компетенциями: познавательной, коммуникативной, информационной и рефлексивной.

способны решать следующие жизненно-практические задачи: Самостоятельно приобретать и применять знания в различных ситуациях, работать в группах, аргументировать и отстаивать свою точку зрения, уметь слушать других, извлекать учебную информацию на основе сопоставительного анализа объектов, пользоваться предметным указателем энциклопедий и справочников для нахождения информации, самостоятельно действовать в ситуации неопределённости при решении актуальных для них проблем.

В результате изучения курса геометрии 8 класса обучающиеся должны:

знать/понимать

  • существо понятия математического доказательства; примеры доказательств;

  • существо понятия алгоритма; примеры алгоритмов;

  • как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;

  • как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;

  • как потребности практики привели математическую науку к необходимости расширения понятия числа;

  • вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;

  • каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;

  • смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;

уметь

  • пользоваться языком геометрии для описания предметов окружающего мира;

  • распознавать геометрические фигуры, различать их взаимное расположение;

  • изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур;

  • распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их;

  • в простейших случаях строить сечения и развертки пространственных тел;

  • проводить операции над векторами, вычислять длину и координаты вектора, угол между векторами;

  • вычислять значения геометрических величин (длин, углов, площадей, объемов), в том числе: для углов от 0 до 180 определять значения тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них, находить стороны, углы и площади треугольников, длины ломаных, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;

  • решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, идеи симметрии;

  • проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;

  • решать простейшие планиметрические задачи в пространстве;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • описания реальных ситуаций на языке геометрии;

  • расчетов, включающих простейшие тригонометрические формулы;

  • решения геометрических задач с использованием тригонометрии

  • решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);

  • построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).



























Литература

1. Алгебра (в 2-х частях). Ч. 1: Учебник. 8 класс» / А.Г. Мордкович. – М.: Мнемозина, 2010 г.

2.«Алгебра (в 2-х частях). Ч. 2: Задачник. 8класс» А.Г. Мордкович, Л.А. Александрова, Т.Н. Мишустина, Е.Е. Тульчинская. – М.: Мнемозина, 2010 г

3.«Геометрия 7 – 9»: Учеб. для общеобразоват. учреждений/ Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. – М.: Просвещение, 2010

4.С.М. Саакян, В.Ф. Бутузов. Изучение геометрии в 7-9 классах: Методические рекомендации к учебнику. Книга для учителя. – М.: Просвещение, 2010.


10