СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Вероятность и статистика для сдачи ОГЭ и ЕГЭ

Категория: Математика

Нажмите, чтобы узнать подробности

В настоящее время актуальной стала проблема подготовки обучающихся к новой форме аттестации - ОГЭ и ЕГЭ. Сдача экзамена по математике за курс основной школы в форме ОГЭ и старшей школы в форме ЕГЭ является одним из направлений модернизации школьного образования на современном этапе. 

Просмотр содержимого документа
«Вероятность и статистика для сдачи ОГЭ и ЕГЭ»


Тема: «Вероятность и статистика для сдачи ОГЭ и ЕГЭ»

СОДЕРЖАНИЕ



пояснительная записка 3

1. теоретическая часть 6

1.1. основные понятия 6

1.2. аксиомы вероятностей 7

2. практическая часть 9

2.1. задачи для 9 класса 9

2.2. задачи для 11 класса 10

3. решение практической части 13

3.1. решение задач для 9 класса 13

3.2. решение задач для 11 класса 18

4. критерии оценвания 24

литература 25

информационно-техническое обеспечение 25




пояснительная записка


В настоящее время актуальной стала проблема подготовки обучающихся к новой форме аттестации - ОГЭ и ЕГЭ. Сдача экзамена по математике за курс основной школы в форме ОГЭ и старшей школы в форме ЕГЭ является одним из направлений модернизации школьного образования на современном этапе.

Наша программа занятий «Вероятность и статистика», ориентирована на приобретение определенного опыта решения типовых задач по теме, позволяет выпускнику получить дополнительную подготовку для сдачи экзамена по математике в форме ЕГЭ и ОГЭ.

Особенность состоит в том, что в нашей программе занятий по математике предлагаются небольшие фрагменты, рассчитанные на 4-6 уроков на всю тему. Каждое занятие, а также все они в целом направлены на то, чтобы развить интерес школьников к предмету, познакомить их с новыми идеями и методами, расширить представление об изучаемом в основном курсе материале.

Этот курс предлагает учащимся знакомство с математикой как с общекультурной ценностью, выработкой понимания ими того, что математика является инструментом познания окружающего мира и самого себя. Если в изучении предметов естественнонаучного цикла очень важное место занимает эксперимент и именно в процессе эксперимента и обсуждения его организации и результатов формируются и развиваются интересы ученика к данному предмету, то в математике эквивалентом эксперимента является решение вероятностных задач.

Собственно весь курс математики может быть построен и, как правило, строится на решении различных по степени важности и трудности задач. Экзаменационная работа по математике в новой форме (ЕГЭ и ОГЭ) состоит из двух частей. Первая часть предполагает проверку уровня обязательной подготовки обучающихся (владение понятиями, знание свойств и алгоритмов, решение стандартных задач). Вторая часть имеет вид традиционной контрольной работы и состоит из пяти заданий. Эта часть работы направлена на дифференцированную проверку повышенного уровня математической подготовки обучающихся: владение формально-оперативным аппаратом, интеграция знаний из различных тем школьного курса, исследовательские навыки.

Курс предусматривает повторное рассмотрение теоретического материала по математике, поэтому имеет большое общеобразовательное значение, способствует развитию логического мышления, намечает и использует целый ряд межпредметных связей и направлен в первую очередь на устранение «пробелов» в базовой составляющей математики систематизацию знаний по основным разделам школьной программы.

Цель занятий:

  1. подготовить обучающихся к сдаче экзамена по математике в форме ОГЭ и ЕГЭ по теме «Вероятность и статистика» в соответствии с требованиями, предъявляемыми новыми образовательными стандартами;

  2. оказание индивидуальной и систематической помощи выпускнику при повторении данного материала при подготовке к экзаменам.

Задачи занятий:

- дать ученику возможность проанализировать свои способности;

- повторить, обобщить и углубить знания по теме «Вероятность и статистика»;

- выработать умение пользоваться контрольно-измерительными материалами;

- проанализировать усвоения данного материала при подготовке к экзаменам.

Методы и формы обучения определяются требованиями профилизации обучения, с учетом индивидуальных и возрастных особенностей учащихся, развития и саморазвития личности. Для работы с учащимися безусловно применимы такие формы работы, как лекция и семинар. Помимо этих традиционных форм рекомендуется использовать также дискуссии, выступления с докладами, содержащими отчет о выполнении индивидуального или группового домашнего задания или с содокладами, дополняющими лекцию учителя.

Возможны различные формы творческой работы учащихся, как например, «защита решения», отчет по результатам «поисковой» работы на страницах книг, журналов, сайтов в Интернете по указанной теме.

Предлагаемый курс является развитием системы ранее приобретенных программных знаний, его цель - создать целостное представление о теме и значительно расширить спектр задач, посильных для учащихся.

Организация на занятиях должна несколько отличаться от урочной: ученику необходимо давать время на размышление, учить рассуждать.

В курсе заложена возможность дифференцированного обучения.

Таким образом, программа применима для различных групп школьников, в том числе, не имеющих хорошей подготовки.

Основная функция учителя в данном курсе состоит в «сопровождении» учащегося в его познавательной деятельности, коррекции ранее полученных учащимися ЗУН.

Ожидаемый результат выпускник должен знать/понимать:

- существо понятия вероятности; примеры решения задач на вероятность;

- как используются формулы вероятности и статистики, как из них составить уравнения и неравенства;

- примеры их применения для решения математических и практических задач;

- как потребности практики привели математическую науку к необходимости расширения понятия числа;

- значение математики как науки;

- значение математики в повседневной жизни, а также как прикладного инструмента в будущей профессиональной деятельности

Выпускник должен уметь:

- решать задания, по типу приближенных к заданиям государственной итоговой аттестации (базовую часть) иметь опыт (в терминах компетентностей):

- работать с сайтами подготовки к ЕГЭ и ОГЭ,

- работать с информацией, в том числе и получаемой посредством Интернет.

Методические рекомендации по реализации программы. Основным дидактическим средством для предлагаемого курса являются тексты рассматриваемых типов задач, которые могут быть выбраны из разнообразных сборников, различных вариантов ЕГЭ и ОГЭ или составлены самим учителем.



  1. теоретическая часть


    1. основные понятия


Теория вероятностей — математическая наука, изучающая закономерности массовых случайных явлений (событий). 

Случайным событием (или просто событием) называется всякое явление, которое может произойти или не произойти при осуществлении определенной совокупности условий. Теория вероятностей имеет дело с такими событиями, которые имеют массовый характер. Это значит, что данная совокупность условий может быть воспроизведена неограниченное число раз. Каждое такое осуществление данной совокупности условий называют испытанием (или опытом). 


Если, например, испытание состоит в бросании монеты, то выпадение герба является событием; если испытание — изготовление подшипника данного типа, то соответствие подшипника стандарту — событие; если испытание — бросание игральной кости, т. е. кубика, на гранях которого проставлены цифры (очки) от 1 до 6, тo выпадение пятерки — событие. 

    События будем обозначать заглавными буквами латинского алфавита: AВС,...

Пусть при n испытаниях событие A появилось m раз.

Отношение m/n называется частотой (относительной частотой) события A и обозначается Р*(А)=m/n 

Опыт показывает, что при многократном повторении испытаний частота Р*(А) случайного события обладает устойчивостью. Поясним это на примере.


Пусть при бросании монеты 4040 раз герб выпал 2048 раз. Частота появления герба в данной серии опытов равна Р*(А)=m/n=2048/4040=0,5069. При бросании той же монеты 12000 раз герб выпал 6019 раз. Следовательно, в этом случае частота Р*(А)=6019/12000=0,5016. Наконец, при 24000 бросаний герб появился 12012 раз с частотой Р*(А)=0,5005. Таким образом, мы видим, что при большом числе бросаний монеты частота появления герба обладает устойчивостью, т. е. мало отличается от числа 0,5. Как показывает опыт, это отклонение частоты от числа 0,5 уменьшается с увеличением числа испытаний. Наблюдаемое в этом примере свойство устойчивости частоты является общим свойством массовых случайных событий, а именно, всегда существует такое число, к которому приближается частота появления данного события, мало отличаясь от него при большом числе испытаний. Это число называется вероятностью события. Оно выражает объективную возможность появления события. Чем больше вероятность события, тем более возможным оказывается его появление. Вероятность события A будем обозначать через Р(А). В рассмотренном выше примере вероятность появления герба, очевидно, равна 0,5

Событие называется достоверным, если оно в данном опыте обязательно должно произойти; наоборот, событие называется невозможным, если оно в данном опыте не может произойти. 

Пусть, например, из урны, содержащей только черные шары, вынимают шар. Тогда появление черного шара — достоверное событие; появление белого шара — невозможное событие. 

Если событие достоверно, то оно произойдет при каждом испытании (m=n). Поэтому частота достоверного события всегда равна единице. Наоборот, если событие невозможно, то оно ни при одном испытании не осуществится (m=0). Следовательно, частота невозможного события в любой серии испытаний равна нулю. Поэтому вероятность достоверного события равна единице, а вероятность невозможного события равна нулю.

Если событие A не является ни достоверным, ни невозможным, то его частота m/n при большом числе испытаний будет мало отличаться от некоторого числа p (где 0  ) — вероятности события A

Совмещением (или произведением) двух событий A и В называется событие, состоящее в совместном наступлении как события A, так и события В. Это событие будем обозначать АВ или ВА

Аналогично, совмещением нескольких событий, например AВ и С, называется событие D=ABC, состоящее в совместном наступлении событий AВ и С

Объединением (или суммой) двух событий A и В называется событие С, заключающееся в том, что произойдет по крайней мере одно из событий A или В. Это событие обозначается так: С=А+В

Объединением нескольких событий называется событие, состоящее в появлении по крайней мере одного из них. Запись D=A+B+C означает, что событие D есть объединение событий AВ и С

Два события A и В называются несовместными, если наступление события A исключает наступление события В. Отсюда следует, что если события A и В несовместны, то событие AB — невозможное.



    1. аксиомы вероятностей


Пусть A и B — два несовместных события, причем в n испытаниях событие A произошло m1 раз, а событие В произошло m2 раз. Тогда частоты событий A и В соответственно равны P*(A)=m1/nP*(B)=m2/n. Так как события A и В несовместны, то событие A+B в данной серии опытов произошло m1+m2 раз. Следовательно,

Таким образом, частота события A+B равна сумме частот событий A и В. Но при больших n частоты P*(A)P*(B) и P*(A+B) мало отличаются от соответствующих вероятностей P(A)P(B) и P(A+B). Поэтому естественно принять, что если A и В — несовместные события, то P(A+B)=P(A)+P(B) 

Изложенное позволяет высказать следующие свойства вероятностей, которые мы принимаем в качестве аксиом. 


Аксиома 1. Каждому случайному событию A соответствует определенное число Р(А), называемое его вероятностью и удовлетворяющее условию . 


Аксиома 2. Вероятность достоверного события равна единице. 


Аксиома 3 (аксиома сложения вероятностей). Пусть A и В — несовместные события. Тогда вероятность того, что произойдет хотя бы одно из этих двух событий, равна сумме их вероятностей:

P(A+B)=P(A)+P(B)



Аксиома 3 допускает обобщение на случай нескольких событий, а именно: если события A1, A2, ..., An, попарно несовместны, то



Событием, противоположным событию , называется событие , состоящее в ненаступлении события . Очевидно, события  и  несовместны. 


Пусть, например, событие  состоит в том, что изделие удовлетворяет стандарту; тогда противоположное событие  заключается в том, что изделие стандарту не удовлетворяет. Пусть событие  — выпадение четного числа очков при однократном бросании игральной кости; тогда  — выпадение нечетного числа очков. 


Теорема 1. Для любого события  вероятность противоположного события  выражается равенством


Доказательство. Событие +, состоящее в наступлении или события , или события , очевидно, является достоверным. Поэтому на основании аксиомы 2 имеем Р(+)=1. Так как события  и  несовместны, то используя аксиому 3, получим Р(+)=Р()+P(). Следовательно, Р()+P()=1, откуда 


Теорема 2. Вероятность невозможного события равна нулю. 

Доказательство непосредственно следует из аксиомы 2 и теоремы 1, если заметить, что невозможное событие противоположно достоверному событию.




  1. практическая часть


    1. задачи для 9 класса


1. В слу­чай­ном экс­пе­ри­мен­те сим­мет­рич­ную мо­не­ту бро­са­ют два­жды. Най­ди­те ве­ро­ят­ность того, что орел вы­па­дет ровно 1 раз.

2. Из 1400 новых карт па­мя­ти в сред­нем 56 не­ис­прав­ны. Ка­ко­ва ве­ро­ят­ность того, что слу­чай­но вы­бран­ная карта па­мя­ти ис­прав­на?

3. Стре­лок 3 раза стре­ля­ет по ми­ше­ням. Ве­ро­ят­ность по­па­да­ния в ми­шень при одном вы­стре­ле равна 0,8. Най­ди­те ве­ро­ят­ность того, что стре­лок пер­вые 2 раза попал в ми­ше­ни, а по­след­ний раз про­мах­нул­ся.

4. Коля вы­би­ра­ет трёхзнач­ное число. Най­ди­те ве­ро­ят­ность того, что оно де­лит­ся на 4.

5. На та­рел­ке 12 пи­рож­ков: 5 с мясом, 4 с ка­пу­стой и 3 с виш­ней. На­та­ша на­у­гад вы­би­ра­ет один пи­ро­жок. Най­ди­те ве­ро­ят­ность того, что он ока­жет­ся с виш­ней.

6. На эк­за­ме­не по гео­мет­рии школь­ни­ку достаётся одна за­да­ча из сбор­ни­ка. Ве­ро­ят­ность того, что эта за­да­ча по теме «Па­рал­ле­ло­грамм», равна 0,2. Ве­ро­ят­ность того, что это ока­жет­ся за­да­ча по теме «Пло­щадь», равна 0,1. В сбор­ни­ке нет задач, ко­то­рые од­но­вре­мен­но от­но­сят­ся к этим двум темам. Най­ди­те ве­ро­ят­ность того, что на эк­за­ме­не школь­ни­ку до­ста­нет­ся за­да­ча по одной из этих двух тем.

7. На та­рел­ке лежат пи­рож­ки, оди­на­ко­вые на вид: 4 с мясом, 8 с ка­пу­стой и 3 с виш­ней. Петя на­у­гад вы­би­ра­ет один пи­ро­жок. Най­ди­те ве­ро­ят­ность того, что пи­ро­жок ока­жет­ся с виш­ней.

8. В лыж­ных гон­ках участ­ву­ют 13 спортс­ме­нов из Рос­сии, 2 спортс­ме­на из Нор­ве­гии и 5 спортс­ме­нов из Шве­ции. По­ря­док, в ко­то­ром спортс­ме­ны стар­ту­ют, опре­де­ля­ет­ся жре­би­ем. Най­ди­те ве­ро­ят­ность того, что пер­вым будет стар­то­вать спортс­мен не из Рос­сии.

9. Коля на­уда­чу вы­би­ра­ет дву­знач­ное число. Най­ди­те ве­ро­ят­ность того, что оно окан­чи­ва­ет­ся на 3.

10. У ба­буш­ки 20 чашек: 15 с крас­ны­ми цве­та­ми, осталь­ные с си­ни­ми. Ба­буш­ка на­ли­ва­ет чай в слу­чай­но вы­бран­ную чашку. Най­ди­те ве­ро­ят­ность того, что это будет чашка с си­ни­ми цве­та­ми.

11. Для эк­за­ме­на под­го­то­ви­ли би­ле­ты с но­ме­ра­ми от 1 до 25. Ка­ко­ва ве­ро­ят­ность того, что на­у­гад взя­тый уче­ни­ком билет имеет номер, яв­ля­ю­щий­ся дву­знач­ным чис­лом?

12. Миша с папой ре­ши­ли по­ка­тать­ся на ко­ле­се обо­зре­ния. Всего на ко­ле­се два­дцать че­ты­ре ка­бин­ки, из них 5 — синие, 7 — зе­ле­ные, осталь­ные — крас­ные. Ка­бин­ки по оче­ре­ди под­хо­дят к плат­фор­ме для по­сад­ки. Най­ди­те ве­ро­ят­ность того, что Миша про­ка­тит­ся в крас­ной ка­бин­ке.

13. Из 900 новых флеш-карт в сред­нем 54 не при­год­ны для за­пи­си. Ка­ко­ва ве­ро­ят­ность того, что слу­чай­но вы­бран­ная флеш-карта при­год­на для за­пи­си?

14. В де­неж­но-ве­ще­вой ло­те­рее на 100000 би­ле­тов разыг­ры­ва­ет­ся 1250 ве­ще­вых и 810 де­неж­ных вы­иг­ры­шей. Ка­ко­ва ве­ро­ят­ность де­неж­но­го вы­иг­ры­ша?

15. На эк­за­ме­не 20 би­ле­тов, Сер­гей не вы­учил 3 из них. Най­ди­те ве­ро­ят­ность того, что ему попадётся вы­учен­ный билет.

16. В лыж­ных гон­ках участ­ву­ют 13 спортс­ме­нов из Рос­сии, 2 спортс­ме­на из Нор­ве­гии и 5 спортс­ме­нов из Шве­ции. По­ря­док, в ко­то­ром спортс­ме­ны стар­ту­ют, опре­де­ля­ет­ся жре­би­ем. Най­ди­те ве­ро­ят­ность того, что пер­вым будет стар­то­вать спортс­мен не из Рос­сии.

17. Во время ве­ро­ят­ност­но­го экс­пе­ри­мен­та мо­не­ту бро­си­ли 1000 раз, 532 раза выпал орел. На сколь­ко ча­сто­та вы­па­де­ния решки в этом экс­пе­ри­мен­те от­ли­ча­ет­ся от ве­ро­ят­но­сти этого со­бы­тия?

18. На та­рел­ке лежат пи­рож­ки, оди­на­ко­вые на вид: 4 с мясом, 8 с ка­пу­стой и 3 с яб­ло­ка­ми. Петя на­у­гад вы­би­ра­ет один пи­ро­жок. Най­ди­те ве­ро­ят­ность того, что пи­ро­жок ока­жет­ся с яб­ло­ка­ми.

19. В со­рев­но­ва­ни­ях по ху­до­же­ствен­ной гим­на­сти­ке участ­ву­ют: три гим­наст­ки из Рос­сии, три гим­наст­ки из Укра­и­ны и че­ты­ре гим­наст­ки из Бе­ло­рус­сии. По­ря­док вы­ступ­ле­ний опре­де­ля­ет­ся же­ребьёвкой. Най­ди­те ве­ро­ят­ность того, что пер­вой будет вы­сту­пать гим­наст­ка из Рос­сии.

20. В каж­дой пятой банке кофе со­глас­но усло­ви­ям акции есть приз. Призы рас­пре­де­ле­ны по бан­кам слу­чай­но. Галя по­ку­па­ет банку кофе в на­деж­де вы­иг­рать приз. Най­ди­те ве­ро­ят­ность того, что Галя не найдёт приз в своей банке.



    1. задачи для 11 класса


1. Кон­курс ис­пол­ни­те­лей про­во­дит­ся в 5 дней. Всего за­яв­ле­но 80 вы­ступ­ле­ний — по од­но­му от каж­дой стра­ны. В пер­вый день 8 вы­ступ­ле­ний, осталь­ные рас­пре­де­ле­ны по­ров­ну между остав­ши­ми­ся днями. По­ря­док вы­ступ­ле­ний опре­де­ля­ет­ся же­ребьёвкой. Ка­ко­ва ве­ро­ят­ность, что вы­ступ­ле­ние пред­ста­ви­те­ля Рос­сии со­сто­ит­ся в тре­тий день кон­кур­са?

2. На рок-фе­сти­ва­ле вы­сту­па­ют груп­пы — по одной от каж­дой из за­яв­лен­ных стран. По­ря­док вы­ступ­ле­ния опре­де­ля­ет­ся жре­би­ем. Ка­ко­ва ве­ро­ят­ность того, что груп­па из Китая будет вы­сту­пать после груп­пы из Ка­на­ды и после груп­пы из Ан­глии? Ре­зуль­тат округ­ли­те до сотых. 

3. В не­ко­то­ром го­ро­де из 5000 по­явив­ших­ся на свет мла­ден­цев 2512 маль­чи­ков. Най­ди­те ча­сто­ту рож­де­ния де­во­чек в этом го­ро­де. Ре­зуль­тат округ­ли­те до ты­сяч­ных.

4. В сред­нем из 1500 са­до­вых на­со­сов, по­сту­пив­ших в про­да­жу, 9 под­те­ка­ют. Най­ди­те ве­ро­ят­ность того, что один слу­чай­но вы­бран­ный для кон­тро­ля насос не под­те­ка­ет.

5. Перед на­ча­лом пер­во­го тура чем­пи­о­на­та по на­столь­но­му тен­ни­су участ­ни­ков раз­би­ва­ют на иг­ро­вые пары слу­чай­ным об­ра­зом с по­мо­щью жре­бия. Всего в чем­пи­о­на­те участ­ву­ет 16 спортс­ме­нов, среди ко­то­рых 7 участ­ни­ков из Рос­сии, в том числе Пла­тон Кар­пов. Ка­ко­ва ве­ро­ят­ность того, что в пер­вом туре Пла­тон Кар­пов будет иг­рать с каким-либо спортс­ме­ном из Рос­сии?

6. Иг­раль­ный кубик бро­са­ют два­жды. Сколь­ко эле­мен­тар­ных ис­хо­дов опыта бла­го­при­ят­ству­ют со­бы­тию «А = сумма очков равна 5»?

7. Люба вклю­ча­ет те­ле­ви­зор. Те­ле­ви­зор вклю­ча­ет­ся на слу­чай­ном ка­на­ле. В это время по че­ты­рем ка­на­лам из шест­на­дца­ти по­ка­зы­ва­ют му­зы­каль­ные клипы. Най­ди­те ве­ро­ят­ность того, что Люба по­па­дет на канал, где клипы не идут.

8. По от­зы­вам по­ку­па­те­лей Иван Ива­но­вич оце­нил надёжность двух ин­тер­нет-ма­га­зи­нов. Ве­ро­ят­ность того, что нуж­ный товар до­ста­вят из ма­га­зи­на А, равна 0,8. Ве­ро­ят­ность того, что этот товар до­ста­вят из ма­га­зи­на Б, равна 0,9. Иван Ива­но­вич за­ка­зал товар сразу в обоих ма­га­зи­нах. Счи­тая, что ин­тер­нет-ма­га­зи­ны ра­бо­та­ют не­за­ви­си­мо друг от друга, най­ди­те ве­ро­ят­ность того, что ни один ма­га­зин не до­ста­вит товар.

9. В слу­чай­ном экс­пе­ри­мен­те сим­мет­рич­ную мо­не­ту бро­са­ют два­жды. Най­ди­те ве­ро­ят­ность того, что в пер­вый раз вы­па­да­ет орёл, а во вто­рой — решка.

10. В чем­пи­о­на­те по гим­на­сти­ке участ­ву­ют 25 спортс­ме­нок: 6 из Вен­грии, 7 из Ру­мы­нии, осталь­ные — из Бол­га­рии. По­ря­док, в ко­то­ром вы­сту­па­ют гим­наст­ки, опре­де­ля­ет­ся жре­би­ем. Най­ди­те ве­ро­ят­ность того, что спортс­мен­ка, вы­сту­па­ю­щая пер­вой, ока­жет­ся из Бол­га­рии.

11. В сбор­ни­ке би­ле­тов по ма­те­ма­ти­ке всего 25 би­ле­тов, в 10 из них встре­ча­ет­ся во­прос по не­ра­вен­ствам. Най­ди­те ве­ро­ят­ность того, что в слу­чай­но вы­бран­ном на эк­за­ме­не би­ле­те школь­ни­ку не до­ста­нет­ся во­про­са по не­ра­вен­ствам.

12. В слу­чай­ном экс­пе­ри­мен­те сим­мет­рич­ную мо­не­ту бро­са­ют три­жды. Най­ди­те ве­ро­ят­ность того, что вы­па­дет хотя бы две решки.

13. Если гросс­мей­стер А. иг­ра­ет бе­лы­ми, то он вы­иг­ры­ва­ет у гросс­мей­сте­ра Б. с ве­ро­ят­но­стью 0,52. Если А. иг­ра­ет чер­ны­ми, то А. вы­иг­ры­ва­ет у Б. с ве­ро­ят­но­стью 0,3. Гросс­мей­сте­ры А. и Б. иг­ра­ют две пар­тии, при­чем во вто­рой пар­тии ме­ня­ют цвет фигур. Най­ди­те ве­ро­ят­ность того, что А. вы­иг­ра­ет оба раза.

14. В фирме такси в дан­ный мо­мент сво­бод­но 15 машин: 2 крас­ных, 9 жел­тых и 4 зе­ле­ных. По вы­зо­ву вы­еха­ла одна из машин, слу­чай­но ока­зав­ша­я­ся ближе всего к за­каз­чи­це. Най­ди­те ве­ро­ят­ность того, что к ней при­е­дет жел­тое такси.

15. Чтобы прой­ти в сле­ду­ю­щий круг со­рев­но­ва­ний, фут­боль­ной ко­ман­де нужно на­брать хотя бы 4 очка в двух играх. Если ко­ман­да вы­иг­ры­ва­ет, она по­лу­ча­ет 3 очка, в слу­чае ни­чьей — 1 очко, если про­иг­ры­ва­ет — 0 очков. Най­ди­те ве­ро­ят­ность того, что ко­ман­де удаст­ся выйти в сле­ду­ю­щий круг со­рев­но­ва­ний. Счи­тай­те, что в каж­дой игре ве­ро­ят­но­сти вы­иг­ры­ша и про­иг­ры­ша оди­на­ко­вы и равны 0,4.

16. В сред­нем из 2000 са­до­вых на­со­сов, по­сту­пив­ших в про­да­жу, 6 под­те­ка­ют. Най­ди­те ве­ро­ят­ность того, что один слу­чай­но вы­бран­ный для кон­тро­ля насос не под­те­ка­ет?

17. Две фаб­ри­ки вы­пус­ка­ют оди­на­ко­вые стек­ла для ав­то­мо­биль­ных фар. Пер­вая фаб­ри­ка вы­пус­ка­ет 45% этих сте­кол, вто­рая — 55%. Пер­вая фаб­ри­ка вы­пус­ка­ет 3% бра­ко­ван­ных сте­кол, а вто­рая — 1%. Най­ди­те ве­ро­ят­ность того, что слу­чай­но куп­лен­ное в ма­га­зи­не стек­ло ока­жет­ся бра­ко­ван­ным.

18. В кар­ма­не у Пети было 4 мо­не­ты по рублю и 2 мо­не­ты по два рубля. Петя, не глядя, пе­ре­ло­жил какие-то 3 мо­не­ты в дру­гой кар­ман. Най­ди­те ве­ро­ят­ность того, что обе двух­рублёвые мо­не­ты лежат в одном кар­ма­не.

19. При из­го­тов­ле­нии под­шип­ни­ков диа­мет­ром 67 мм ве­ро­ят­ность того, что диа­метр будет от­ли­чать­ся от за­дан­но­го не боль­ше, чем на 0,01 мм, равна 0,965. Най­ди­те ве­ро­ят­ность того, что слу­чай­ный под­шип­ник будет иметь диа­метр мень­ше чем 66,99 мм или боль­ше чем 67,01 мм.

20. Ме­ха­ни­че­ские часы с две­на­дца­ти­ча­со­вым ци­фер­бла­том в какой-то мо­мент сло­ма­лись и пе­ре­ста­ли хо­дить. Най­ди­те ве­ро­ят­ность того, что ча­со­вая стрел­ка за­сты­ла, до­стиг­нув от­мет­ки 5, но не дойдя до от­мет­ки 11 часов.




  1. решение практической части


    1. решение задач для 9 класса


Задание 1

В слу­чай­ном экс­пе­ри­мен­те сим­мет­рич­ную мо­не­ту бро­са­ют два­жды. Най­ди­те ве­ро­ят­ность того, что орел вы­па­дет ровно 1 раз.

Ре­ше­ние.

Всего воз­мож­ны че­ты­ре ис­хо­да: решка-решка, решка-орёл, орёл-решка, орёл-орёл. Орёл вы­па­да­ет ровно один раз в двух слу­ча­ях, по­это­му ве­ро­ят­ность того, что орёл вы­па­дет ровно один раз равна 

 Ответ: 0,5.


Задание 2

Из 1400 новых карт па­мя­ти в сред­нем 56 не­ис­прав­ны. Ка­ко­ва ве­ро­ят­ность того, что слу­чай­но вы­бран­ная карта па­мя­ти ис­прав­на?

Ре­ше­ние.

Ве­ро­ят­ность того, что вы­бран­ная карта будет не­ис­прав­ной равна  По­это­му ве­ро­ят­ность того, что слу­чай­но вы­бран­ная карта па­мя­ти ис­прав­на, равна 1 − 0,04 = 0,96.

Ответ: 0,96.


Задание 3

Стре­лок 3 раза стре­ля­ет по ми­ше­ням. Ве­ро­ят­ность по­па­да­ния в ми­шень при одном вы­стре­ле равна 0,8. Най­ди­те ве­ро­ят­ность того, что стре­лок пер­вые 2 раза попал в ми­ше­ни, а по­след­ний раз про­мах­нул­ся.

Ре­ше­ние.

Ве­ро­ят­ность того, что стре­лок про­махнётся равна 1 − 0,8 = 0,2. Ве­ро­ят­ность того, что стре­лок пер­вые два раза попал по ми­ше­ням равна 0,82 = 0,64. От­ку­да, ве­ро­ят­ность со­бы­тия, при ко­то­ром стре­лок сна­ча­ла два раза по­па­да­ет в ми­ше­ни, а тре­тий раз про­ма­хи­ва­ет­ся равна 0,64 · 0,2 = 0,128.

 Ответ: 0,128.


Задание 4

Коля вы­би­ра­ет трёхзнач­ное число. Най­ди­те ве­ро­ят­ность того, что оно де­лит­ся на 4.


Ре­ше­ние.

Трёхзнач­ные числа — числа от 100 до 999 вклю­чи­тель­но. Их 900 штук, каж­дое четвёртое число, на­чи­ная со ста де­лит­ся на 4, по­это­му среди дан­ных чисел 225 чисел де­лит­ся на 4. Сле­до­ва­тель­но, ве­ро­ят­ность вы­брать число, де­ля­ще­е­ся на 4 равна 

Ответ: 0,25.


Задание 5

На та­рел­ке 12 пи­рож­ков: 5 с мясом, 4 с ка­пу­стой и 3 с виш­ней. На­та­ша на­у­гад вы­би­ра­ет один пи­ро­жок. Най­ди­те ве­ро­ят­ность того, что он ока­жет­ся с виш­ней.

Ре­ше­ние.

Ве­ро­ят­ность того, что будет вы­бран пи­ро­жок с виш­ней равна от­но­ше­нию ко­ли­че­ства пи­рож­ков с виш­ней к об­ще­му ко­ли­че­ству пи­рож­ков: 

 Ответ:0,25


Задание 6

На эк­за­ме­не по гео­мет­рии школь­ни­ку достаётся одна за­да­ча из сбор­ни­ка. Ве­ро­ят­ность того, что эта за­да­ча по теме «Па­рал­ле­ло­грамм», равна 0,2. Ве­ро­ят­ность того, что это ока­жет­ся за­да­ча по теме «Пло­щадь», равна 0,1. В сбор­ни­ке нет задач, ко­то­рые од­но­вре­мен­но от­но­сят­ся к этим двум темам. Най­ди­те ве­ро­ят­ность того, что на эк­за­ме­не школь­ни­ку до­ста­нет­ся за­да­ча по одной из этих двух тем.


Ре­ше­ние.

Сум­мар­ная ве­ро­ят­ность не­сов­мест­ных со­бы­тий равна сумме ве­ро­ят­но­стей этих со­бы­тий: P=0,2 + 0,1 = 0,3.

 Ответ: 0,3.


Задание 7

На та­рел­ке лежат пи­рож­ки, оди­на­ко­вые на вид: 4 с мясом, 8 с ка­пу­стой и 3 с виш­ней. Петя на­у­гад вы­би­ра­ет один пи­ро­жок. Най­ди­те ве­ро­ят­ность того, что пи­ро­жок ока­жет­ся с виш­ней.


Ре­ше­ние.

Всего пи­рож­ков 4 + 8 + 3 = 15. По­это­му ве­ро­ят­ность того, что вы­бран­ный пи­ро­жок ока­жет­ся с виш­ней равна 

 Ответ: 0,2


Задание 8

В лыж­ных гон­ках участ­ву­ют 13 спортс­ме­нов из Рос­сии, 2 спортс­ме­на из Нор­ве­гии и 5 спортс­ме­нов из Шве­ции. По­ря­док, в ко­то­ром спортс­ме­ны стар­ту­ют, опре­де­ля­ет­ся жре­би­ем. Най­ди­те ве­ро­ят­ность того, что пер­вым будет стар­то­вать спортс­мен не из Рос­сии.

Ре­ше­ние.

Всего спортс­ме­нов 13 + 2 + 5 = 20 че­ло­век. По­это­му ве­ро­ят­ность того, что пер­вым будет стар­то­вать спортс­мен не из Рос­сии равна 

 Ответ: 0,35.


Задание 9

Коля на­уда­чу вы­би­ра­ет дву­знач­ное число. Най­ди­те ве­ро­ят­ность того, что оно окан­чи­ва­ет­ся на 3.


Ре­ше­ние.

Всего есть 90 дву­знач­ных чисел (числа от 10 до 99 вклю­чи­тель­но). Дву­знач­ных чисел, окан­чи­ва­ю­щих­ся на 3 всего 9. Ве­ро­ят­ность слу­чай­но вы­брать дву­знач­ное число, окан­чи­ва­ю­ще­е­ся на 3 равна от­но­ше­нию ко­ли­че­ства таких дву­знач­ных чисел к об­ще­му ко­ли­че­ству дву­знач­ных чисел, то есть 

 Ответ: 0,1.


Задание 10

У ба­буш­ки 20 чашек: 15 с крас­ны­ми цве­та­ми, осталь­ные с си­ни­ми. Ба­буш­ка на­ли­ва­ет чай в слу­чай­но вы­бран­ную чашку. Най­ди­те ве­ро­ят­ность того, что это будет чашка с си­ни­ми цве­та­ми.


Ре­ше­ние.

Ве­ро­ят­ность того, что чай на­льют в чашку с си­ни­ми цве­та­ми равна от­но­ше­нию ко­ли­че­ства чашек с си­ни­ми цве­та­ми к об­ще­му ко­ли­че­ству чашек. Всего чашек с си­ни­ми цве­та­ми:  По­это­му ис­ко­мая ве­ро­ят­ность 

 Ответ: 0,25.


Задание 11

Для эк­за­ме­на под­го­то­ви­ли би­ле­ты с но­ме­ра­ми от 1 до 25. Ка­ко­ва ве­ро­ят­ность того, что на­у­гад взя­тый уче­ни­ком билет имеет номер, яв­ля­ю­щий­ся дву­знач­ным чис­лом?


Ре­ше­ние.

Всего было под­го­тов­ле­но 25 би­ле­тов. Среди них 16 дву­знач­ных. Таким об­ра­зом, ве­ро­ят­ность взять билет с двух­знач­ным но­ме­ром равна 

 Ответ: 0,64


Задание 12

Миша с папой ре­ши­ли по­ка­тать­ся на ко­ле­се обо­зре­ния. Всего на ко­ле­се два­дцать че­ты­ре ка­бин­ки, из них 5 — синие, 7 — зе­ле­ные, осталь­ные — крас­ные. Ка­бин­ки по оче­ре­ди под­хо­дят к плат­фор­ме для по­сад­ки. Най­ди­те ве­ро­ят­ность того, что Миша про­ка­тит­ся в крас­ной ка­бин­ке.

Ре­ше­ние.

Ве­ро­ят­ность того, что по­дой­дет крас­ная ка­бин­ка равна от­но­ше­нию ко­ли­че­ства крас­ных ка­би­нок к об­ще­му ко­ли­че­ству ка­би­нок на ко­ле­се обо­зре­ния. Всего крас­ных ка­би­нок:  По­это­му ис­ко­мая ве­ро­ят­ность 

 Ответ: 0,5.


Задание 13

Из 900 новых флеш-карт в сред­нем 54 не при­год­ны для за­пи­си. Ка­ко­ва ве­ро­ят­ность того, что слу­чай­но вы­бран­ная флеш-карта при­год­на для за­пи­си?

Ре­ше­ние.

Из 900 карт ис­прав­ны 900 − 54 = 846 шт. По­это­му ве­ро­ят­ность того, что слу­чай­но вы­бран­ная флеш-карта при­год­на для за­пи­си равна: .

 Ответ: 0,94.


Задание 14

В де­неж­но-ве­ще­вой ло­те­рее на 100000 би­ле­тов разыг­ры­ва­ет­ся 1250 ве­ще­вых и 810 де­неж­ных вы­иг­ры­шей. Ка­ко­ва ве­ро­ят­ность де­неж­но­го вы­иг­ры­ша?

Ре­ше­ние.

Ка­ко­ва ве­ро­ят­ность де­неж­но­го вы­иг­ры­ша равна 

Ответ: 0,0081


Задание 15

На эк­за­ме­не 20 би­ле­тов, Сер­гей не вы­учил 3 из них. Най­ди­те ве­ро­ят­ность того, что ему попадётся вы­учен­ный билет.

Ре­ше­ние.

Сер­гей вы­учил 20 − 3 = 17 во­про­сов. По­это­му ве­ро­ят­ность того, что ему попадётся вы­учен­ный билет равна 

 Ответ: 0,85.


Задание 16

В лыж­ных гон­ках участ­ву­ют 13 спортс­ме­нов из Рос­сии, 2 спортс­ме­на из Нор­ве­гии и 5 спортс­ме­нов из Шве­ции. По­ря­док, в ко­то­ром спортс­ме­ны стар­ту­ют, опре­де­ля­ет­ся жре­би­ем. Най­ди­те ве­ро­ят­ность того, что пер­вым будет стар­то­вать спортс­мен не из Рос­сии.

Ре­ше­ние.

Всего вы­сту­па­ет 13 + 2 + 5 = 20 спортс­ме­нов. Из них не из Рос­сии 7 спортс­ме­нов. По­это­му ве­ро­ят­ность того, что пер­вым будет стар­то­вать спортс­мен не из Рос­сии равна 

 Ответ:0,35


Задание 17

Во время ве­ро­ят­ност­но­го экс­пе­ри­мен­та мо­не­ту бро­си­ли 1000 раз, 532 раза выпал орел. На сколь­ко ча­сто­та вы­па­де­ния решки в этом экс­пе­ри­мен­те от­ли­ча­ет­ся от ве­ро­ят­но­сти этого со­бы­тия?
Ре­ше­ние.

Всего воз­мож­ны два ис­хо­да экс­пе­ри­мен­та, вы­па­де­нию решки удо­вле­тво­ря­ет один из них, по­это­му ве­ро­ят­ность вы­па­де­ния решки в этом экс­пе­ри­мен­те равна 1 : 2 = 0,5. Ча­сто­та вы­па­де­ния решки в дан­ном экс­пе­ри­мен­те равна (1000 − 532) : 1000 = 0,468. По­это­му ча­сто­та вы­па­де­ния решки в этом экс­пе­ри­мен­те от­ли­ча­ет­ся от ве­ро­ят­но­сти этого со­бы­тия на 0,5 − 0,468 = 0,032.

 Ответ: 0,032.


Задание 18

На та­рел­ке лежат пи­рож­ки, оди­на­ко­вые на вид: 4 с мясом, 8 с ка­пу­стой и 3 с яб­ло­ка­ми. Петя на­у­гад вы­би­ра­ет один пи­ро­жок. Най­ди­те ве­ро­ят­ность того, что пи­ро­жок ока­жет­ся с яб­ло­ка­ми.


Ре­ше­ние.

Ве­ро­ят­ность вы­та­щить пи­ро­жок с яб­ло­ка­ми равна от­но­ше­нию ко­ли­че­ства пи­рож­ков с яб­ло­ка­ми к об­ще­му ко­ли­че­ству пи­рож­ков: 

 Ответ:0,2


Задание 19

В со­рев­но­ва­ни­ях по ху­до­же­ствен­ной гим­на­сти­ке участ­ву­ют: три гим­наст­ки из Рос­сии, три гим­наст­ки из Укра­и­ны и че­ты­ре гим­наст­ки из Бе­ло­рус­сии. По­ря­док вы­ступ­ле­ний опре­де­ля­ет­ся же­ребьёвкой. Най­ди­те ве­ро­ят­ность того, что пер­вой будет вы­сту­пать гим­наст­ка из Рос­сии.

Ре­ше­ние.

Всего в со­рев­но­ва­ни­ях участ­ву­ют 3 + 3 + 4 = 10 гим­на­сток. По­это­му ве­ро­ят­ность того, что пер­вой будет вы­сту­пать гим­наст­ка из Рос­сии равна 

 Ответ: 0,3.


Задание 20

В каж­дой пятой банке кофе со­глас­но усло­ви­ям акции есть приз. Призы рас­пре­де­ле­ны по бан­кам слу­чай­но. Галя по­ку­па­ет банку кофе в на­деж­де вы­иг­рать приз. Най­ди­те ве­ро­ят­ность того, что Галя не найдёт приз в своей банке.

Ре­ше­ние.

Ве­ро­ят­ность ку­пить банку с при­зом равна  По­это­му ве­ро­ят­ность вы­та­щить банку без приза равна 

 Ответ: 0,8.



    1. решение задач для 11 класса


Задание 1

Кон­курс ис­пол­ни­те­лей про­во­дит­ся в 5 дней. Всего за­яв­ле­но 80 вы­ступ­ле­ний — по од­но­му от каж­дой стра­ны. В пер­вый день 8 вы­ступ­ле­ний, осталь­ные рас­пре­де­ле­ны по­ров­ну между остав­ши­ми­ся днями. По­ря­док вы­ступ­ле­ний опре­де­ля­ет­ся же­ребьёвкой. Ка­ко­ва ве­ро­ят­ность, что вы­ступ­ле­ние пред­ста­ви­те­ля Рос­сии со­сто­ит­ся в тре­тий день кон­кур­са?

Ре­ше­ние.

На тре­тий день за­пла­ни­ро­ва­но  вы­ступ­ле­ний. Зна­чит, ве­ро­ят­ность того, что вы­ступ­ле­ние пред­ста­ви­те­ля из Рос­сии ока­жет­ся за­пла­ни­ро­ван­ным на тре­тий день кон­кур­са, равна

 

Ответ: 0,225.



Задание 2

 На рок-фе­сти­ва­ле вы­сту­па­ют груп­пы — по одной от каж­дой из за­яв­лен­ных стран. По­ря­док вы­ступ­ле­ния опре­де­ля­ет­ся жре­би­ем. Ка­ко­ва ве­ро­ят­ность того, что груп­па из Китая будет вы­сту­пать после груп­пы из Ка­на­ды и после груп­пы из Ан­глии? Ре­зуль­тат округ­ли­те до сотых.

 

Ре­ше­ние.

Общее ко­ли­че­ство вы­сту­па­ю­щих на фе­сти­ва­ле групп для от­ве­та на во­прос не­важ­но. Сколь­ко бы их ни было, для ука­зан­ных стран есть 6 спо­со­бов вза­им­но­го рас­по­ло­же­ния среди вы­сту­па­ю­щих (Ки — Китай, Ка — Ка­на­да, А — Ан­глия):

 

...Ки...Ка...А..., ...Ки...А...Ка..., ...Ка...А...Ки..., ...Ка...Ки...А..., ...А...Ки...Ка..., ...А...Ка...Ки...

Китай на­хо­дит­ся после Ка­на­ды и Ан­глии в двух слу­ча­ях. По­это­му ве­ро­ят­ность того, что груп­пы слу­чай­ным об­ра­зом будут рас­пре­де­ле­ны имен­но так, равна

 

Ответ: 0,33.

За­ме­ча­ние.

Пусть тре­бу­ет­ся найти ве­ро­ят­ность того, что ки­тай­ские му­зы­кан­ты ока­жут­ся по­след­ни­ми среди  вы­сту­па­ю­щих от раз­ных го­су­дарств групп. По­ста­вим ко­ман­ду Китая на по­след­нее место и най­дем ко­ли­че­ство пе­ре­ста­но­вок без по­вто­ре­ний из  преды­ду­щих групп: оно равно  Общее ко­ли­че­ство пе­ре­ста­но­вок из всех  групп равно  По­это­му ис­ко­мая ве­ро­ят­ность равна

 

Задание 3

В не­ко­то­ром го­ро­де из 5000 по­явив­ших­ся на свет мла­ден­цев 2512 маль­чи­ков. Най­ди­те ча­сто­ту рож­де­ния де­во­чек в этом го­ро­де. Ре­зуль­тат округ­ли­те до ты­сяч­ных.


Ре­ше­ние.

Из 5000 тысяч но­во­рож­ден­ных 5000 − 2512 = 2488 де­во­чек. По­это­му ча­сто­та рож­де­ния де­во­чек равна

 

Ответ: 0,498.


Задание 4 №

В сред­нем из 1500 са­до­вых на­со­сов, по­сту­пив­ших в про­да­жу, 9 под­те­ка­ют. Най­ди­те ве­ро­ят­ность того, что один слу­чай­но вы­бран­ный для кон­тро­ля насос не под­те­ка­ет.


Ре­ше­ние.

В сред­нем из 1500 са­до­вых на­со­сов, по­сту­пив­ших в про­да­жу, 1500 − 9 = 1491 не под­те­ка­ют. Зна­чит, ве­ро­ят­ность того, что один слу­чай­но вы­бран­ный для кон­тро­ля насос не под­те­ка­ет, равна

 

Ответ: 0,994.


Задание 5

Перед на­ча­лом пер­во­го тура чем­пи­о­на­та по на­столь­но­му тен­ни­су участ­ни­ков раз­би­ва­ют на иг­ро­вые пары слу­чай­ным об­ра­зом с по­мо­щью жре­бия. Всего в чем­пи­о­на­те участ­ву­ет 16 спортс­ме­нов, среди ко­то­рых 7 участ­ни­ков из Рос­сии, в том числе Пла­тон Кар­пов. Ка­ко­ва ве­ро­ят­ность того, что в пер­вом туре Пла­тон Кар­пов будет иг­рать с каким-либо спортс­ме­ном из Рос­сии?

Ре­ше­ние.

В пер­вом туре Пла­тон Кар­пов может сыг­рать с 16 − 1 = 15 тен­ни­си­ста­ми, из ко­то­рых 7 − 1 = 6 из Рос­сии. Зна­чит, ве­ро­ят­ность того, что в пер­вом туре Пла­тон Кар­пов будет иг­рать с каким-либо тен­ни­си­стом из Рос­сии, равна 

Ответ: 0,4.



Задание 6

Иг­раль­ный кубик бро­са­ют два­жды. Сколь­ко эле­мен­тар­ных ис­хо­дов опыта бла­го­при­ят­ству­ют со­бы­тию «А = сумма очков равна 5»?
Ре­ше­ние.

Сумма очков может быть равна 5 в че­ты­рех слу­ча­ях: «3 + 2», «2 + 3», «1 + 4», «4 + 1».

 Ответ: 4.

Задание 7

Люба вклю­ча­ет те­ле­ви­зор. Те­ле­ви­зор вклю­ча­ет­ся на слу­чай­ном ка­на­ле. В это время по че­ты­рем ка­на­лам из шест­на­дца­ти по­ка­зы­ва­ют му­зы­каль­ные клипы. Най­ди­те ве­ро­ят­ность того, что Люба по­па­дет на канал, где клипы не идут.

Ре­ше­ние.

му­зы­каль­ные клипы не идут по 16 – 4 = 12 ка­на­лам. Тогда ве­ро­ят­ность того, что Люба по­па­дет на канал, где му­зы­каль­ные клипы не идут, равна 

.

Ответ: 0,75.


Задание 8

По от­зы­вам по­ку­па­те­лей Иван Ива­но­вич оце­нил надёжность двух ин­тер­нет-ма­га­зи­нов. Ве­ро­ят­ность того, что нуж­ный товар до­ста­вят из ма­га­зи­на А, равна 0,8. Ве­ро­ят­ность того, что этот товар до­ста­вят из ма­га­зи­на Б, равна 0,9. Иван Ива­но­вич за­ка­зал товар сразу в обоих ма­га­зи­нах. Счи­тая, что ин­тер­нет-ма­га­зи­ны ра­бо­та­ют не­за­ви­си­мо друг от друга, най­ди­те ве­ро­ят­ность того, что ни один ма­га­зин не до­ста­вит товар.


Ре­ше­ние.

Ве­ро­ят­ность того, что пер­вый ма­га­зин не до­ста­вит товар равна 1 − 0,9 = 0,1. Ве­ро­ят­ность того, что вто­рой ма­га­зин не до­ста­вит товар равна 1 − 0,8 = 0,2. По­сколь­ку эти со­бы­тия не­за­ви­си­мы, ве­ро­ят­ность их про­из­ве­де­ния (оба ма­га­зи­на не до­ста­вят товар) равна про­из­ве­де­нию ве­ро­ят­но­стей этих со­бы­тий: 0,1 · 0,2 = 0,02.

 Ответ: 0,02.


Задание 9

В слу­чай­ном экс­пе­ри­мен­те сим­мет­рич­ную мо­не­ту бро­са­ют два­жды. Най­ди­те ве­ро­ят­ность того, что в пер­вый раз вы­па­да­ет орёл, а во вто­рой — решка.


Ре­ше­ние.

Всего воз­мож­ных ис­хо­дов — че­ты­ре: орел-орел, орел-решка, решка-орел, решка-решка. Бла­го­при­ят­ным яв­ля­ет­ся один: орел-решка. Сле­до­ва­тель­но, ис­ко­мая ве­ро­ят­ность равна 1 : 4 = 0,25.

Ответ: 0,25.


Задание 10

В чем­пи­о­на­те по гим­на­сти­ке участ­ву­ют 25 спортс­ме­нок: 6 из Вен­грии, 7 из Ру­мы­нии, осталь­ные — из Бол­га­рии. По­ря­док, в ко­то­ром вы­сту­па­ют гим­наст­ки, опре­де­ля­ет­ся жре­би­ем. Най­ди­те ве­ро­ят­ность того, что спортс­мен­ка, вы­сту­па­ю­щая пер­вой, ока­жет­ся из Бол­га­рии.

Ре­ше­ние.

В чем­пи­о­на­те при­ни­ма­ет уча­стие 25 − 6 − 7 = 12 спортс­ме­нок из Бол­га­рии. Тогда ве­ро­ят­ность того, что спортс­мен­ка, вы­сту­па­ю­щая пер­вой, ока­жет­ся из Бол­га­рии равна

Ответ: 0,48.


Задание 11

В сбор­ни­ке би­ле­тов по ма­те­ма­ти­ке всего 25 би­ле­тов, в 10 из них встре­ча­ет­ся во­прос по не­ра­вен­ствам. Най­ди­те ве­ро­ят­ность того, что в слу­чай­но вы­бран­ном на эк­за­ме­не би­ле­те школь­ни­ку не до­ста­нет­ся во­про­са по не­ра­вен­ствам.

Ре­ше­ние.

Из 25 би­ле­тов 15 не со­дер­жат во­про­са по не­ра­вен­ствам, по­это­му ве­ро­ят­ность того, что в слу­чай­но вы­бран­ном на эк­за­ме­не би­ле­те школь­ни­ку не до­ста­нет­ся во­про­са по не­ра­вен­ствам, равна 

Ответ: 0,6.


Задание 12

В слу­чай­ном экс­пе­ри­мен­те сим­мет­рич­ную мо­не­ту бро­са­ют три­жды. Най­ди­те ве­ро­ят­ность того, что вы­па­дет хотя бы две решки.

Ре­ше­ние.

Всего воз­мож­ных ис­хо­дов — 8: орел-орел-орел, орел-орел-решка, орел-решка-решка, орел-решка-орел, решка-решка-решка, решка-решка-орел, решка-орел-орел, решка-орел-решка. Бла­го­при­ят­ны­ми яв­ля­ют­ся че­ты­ре: решка-решка-решка, решка-решка-орел, решка-орел-решка, орел-решка-решка. Сле­до­ва­тель­но, ис­ко­мая ве­ро­ят­ность равна 4 : 8 = 0,5.

Ответ: 0,5.


Задание 13

Если гросс­мей­стер А. иг­ра­ет бе­лы­ми, то он вы­иг­ры­ва­ет у гросс­мей­сте­ра Б. с ве­ро­ят­но­стью 0,52. Если А. иг­ра­ет чер­ны­ми, то А. вы­иг­ры­ва­ет у Б. с ве­ро­ят­но­стью 0,3. Гросс­мей­сте­ры А. и Б. иг­ра­ют две пар­тии, при­чем во вто­рой пар­тии ме­ня­ют цвет фигур. Най­ди­те ве­ро­ят­ность того, что А. вы­иг­ра­ет оба раза.

Ре­ше­ние.

Воз­мож­ность вы­иг­рать первую и вто­рую пар­тию не за­ви­сят друг от друга. Ве­ро­ят­ность про­из­ве­де­ния не­за­ви­си­мых со­бы­тий равна про­из­ве­де­нию их ве­ро­ят­но­стей: 0,52 · 0,3 = 0,156.

Ответ: 0,156.


Задание 14

В фирме такси в дан­ный мо­мент сво­бод­но 15 машин: 2 крас­ных, 9 жел­тых и 4 зе­ле­ных. По вы­зо­ву вы­еха­ла одна из машин, слу­чай­но ока­зав­ша­я­ся ближе всего к за­каз­чи­це. Най­ди­те ве­ро­ят­ность того, что к ней при­е­дет жел­тое такси.

Ре­ше­ние.

ве­ро­ят­ность того, что к за­каз­чи­це при­е­дет жел­тое такси равна Ответ: 0,6.


Задание 15

Чтобы прой­ти в сле­ду­ю­щий круг со­рев­но­ва­ний, фут­боль­ной ко­ман­де нужно на­брать хотя бы 4 очка в двух играх. Если ко­ман­да вы­иг­ры­ва­ет, она по­лу­ча­ет 3 очка, в слу­чае ни­чьей — 1 очко, если про­иг­ры­ва­ет — 0 очков. Най­ди­те ве­ро­ят­ность того, что ко­ман­де удаст­ся выйти в сле­ду­ю­щий круг со­рев­но­ва­ний. Счи­тай­те, что в каж­дой игре ве­ро­ят­но­сти вы­иг­ры­ша и про­иг­ры­ша оди­на­ко­вы и равны 0,4.


Ре­ше­ние.

Ко­ман­да может по­лу­чить не мень­ше 4 очков в двух играх тремя спо­со­ба­ми: 3+1, 1+3, 3+3. Эти со­бы­тия не­сов­мест­ны, ве­ро­ят­ность их суммы равна сумме их ве­ро­ят­но­стей. Каж­дое из этих со­бы­тий пред­став­ля­ет собой про­из­ве­де­ние двух не­за­ви­си­мых со­бы­тий — ре­зуль­та­та в пер­вой и во вто­рой игре.

Это ве­ро­ят­ность ни­чьей, она равна 1 − 0,4 − 0,4 = 0,2.

От­сю­да имеем: 

Ответ: 0,32.


Задание 16

В сред­нем из 2000 са­до­вых на­со­сов, по­сту­пив­ших в про­да­жу, 6 под­те­ка­ют. Най­ди­те ве­ро­ят­ность того, что один слу­чай­но вы­бран­ный для кон­тро­ля насос не под­те­ка­ет?


Ре­ше­ние.

в сред­нем из 2000 са­до­вых на­со­сов, по­сту­пив­ших в про­да­жу, 2000 − 6 = 1994 не под­те­ка­ют. Зна­чит, ве­ро­ят­ность того, что один слу­чай­но вы­бран­ный для кон­тро­ля насос не под­те­ка­ет, равна  

Ответ: 0,997.


Задание 17

Две фаб­ри­ки вы­пус­ка­ют оди­на­ко­вые стек­ла для ав­то­мо­биль­ных фар. Пер­вая фаб­ри­ка вы­пус­ка­ет 45% этих сте­кол, вто­рая — 55%. Пер­вая фаб­ри­ка вы­пус­ка­ет 3% бра­ко­ван­ных сте­кол, а вто­рая — 1%. Най­ди­те ве­ро­ят­ность того, что слу­чай­но куп­лен­ное в ма­га­зи­не стек­ло ока­жет­ся бра­ко­ван­ным.

Ре­ше­ние.

Ве­ро­ят­ность того, что стек­ло куп­ле­но на пер­вой фаб­ри­ке и оно бра­ко­ван­ное: 0,45 · 0,03 = 0,0135.

 

Ве­ро­ят­ность того, что стек­ло куп­ле­но на вто­рой фаб­ри­ке и оно бра­ко­ван­ное: 0,55 · 0,01 = 0,0055.

  По­это­му по фор­му­ле пол­ной ве­ро­ят­но­сти ве­ро­ят­ность того, что слу­чай­но куп­лен­ное в ма­га­зи­не стек­ло ока­жет­ся бра­ко­ван­ным равна 0,0135 + 0,0055 = 0,019.

 Ответ: 0,019.


Задание 18

В кар­ма­не у Пети было 4 мо­не­ты по рублю и 2 мо­не­ты по два рубля. Петя, не глядя, пе­ре­ло­жил какие-то 3 мо­не­ты в дру­гой кар­ман. Най­ди­те ве­ро­ят­ность того, что обе двух­рублёвые мо­не­ты лежат в одном кар­ма­не.

Ре­ше­ние.

Двух­руб­ле­вые мо­не­ты могут ле­жать в одном кар­ма­не, если Петя пе­ре­ло­жил в дру­гой кар­ман три из че­ты­рех руб­ле­вых монет (а двух­руб­ле­вые не пе­ре­кла­ды­вал), или если пе­ре­ло­жил в дру­гой кар­ман обе двух­руб­ле­вые мо­не­ты и одну руб­ле­вую одним из трех спо­со­бов: 1, 2, 2; 2, 1, 2; 2, 2, 1. Эти со­бы­тия не­сов­мест­ные, ве­ро­ят­ность их суммы равна сумме ве­ро­ят­но­стей этих со­бы­тий:

Ответ: 0,4.


Задание 19

При из­го­тов­ле­нии под­шип­ни­ков диа­мет­ром 67 мм ве­ро­ят­ность того, что диа­метр будет от­ли­чать­ся от за­дан­но­го не боль­ше, чем на 0,01 мм, равна 0,965. Най­ди­те ве­ро­ят­ность того, что слу­чай­ный под­шип­ник будет иметь диа­метр мень­ше чем 66,99 мм или боль­ше чем 67,01 мм.

Ре­ше­ние.

По усло­вию, диа­метр под­шип­ни­ка будет ле­жать в пре­де­лах от 66,99 до 67,01 мм с ве­ро­ят­но­стью 0,965. По­это­му ис­ко­мая ве­ро­ят­ность про­ти­во­по­лож­но­го со­бы­тия равна 1 − 0,965 = 0,035.

 Ответ: 0,035.


Задание 20

Ме­ха­ни­че­ские часы с две­на­дца­ти­ча­со­вым ци­фер­бла­том в какой-то мо­мент сло­ма­лись и пе­ре­ста­ли хо­дить. Най­ди­те ве­ро­ят­ность того, что ча­со­вая стрел­ка за­сты­ла, до­стиг­нув от­мет­ки 5, но не дойдя до от­мет­ки 11 часов. 

Ре­ше­ние.

На ци­фер­бла­те между пятью и один­на­дца­тью ча­са­ми шесть ча­со­вых де­ле­ний. Всего на ци­фер­бла­те 12 ча­со­вых де­ле­ний. По­это­му ис­ко­мая ве­ро­ят­ность равна:  

Ответ: 0,5.





  1. критерии оценвания


Максимальное количество баллов, которое может получить выпускник за выполнение всей работы – 20 баллов.

За верно выполненное задание 1 балл.

 Рекомендуемый минимальный результат выполнения работы, свидетельствующий об освоении федерального компонента образовательного стандарта в предметной области «Математика» по теме «Вероятность и статистика», – 12 баллов.

Таким образом, суммарный балл, полученный выпускником, является объективным и независимым показателем уровня его подготовки.

 

 

Пересчет первичных баллов в отметку 

 

Отметка по пятибалльной шкале

2

3

4

5

Суммарный балл за работу в целом

0 - 11

12 - 15

16 - 18

18 - 20




литература
  1. Кузнецов. Л.В. "Сборник заданий для подготовки к итоговой аттестации" "Просвещение" 2011

  2. Лысенко Ф.Ф. "Математика 9 класс" подготовка к ОГЭ. "Легион"  2014

  3. Ященко И.В, Шестакова С.А. ОГЭ математика 9 класс Типовые тестовые задания. М: "экзамен" 2015

  4. Глазков Ю.А, Варшавский И.К. . ОГЭ математика 9 класс . Практикум по выполнению типовых тестовых заданий. М: "экзамен" 2015

  5. Ященко И.В. и др. ОГЭ математика 9 класс. Типовые экзаменационные варианты ( 36 вариантов). М: "Национальное образование" 2015.

  6. Семёнов А.В, Трепалин А.С, Ященко И.В и др. ОГЭ математика 9 класс. Государственная итоговая аттестация выпускников 9 классов. М: "Интеллект - Центр". 2015

  7. Рязановский А.Р, Мухин Д.Г. ОГЭ математика 9 класс. "Теория вероятностей и элементы статистики" М:"Экзамен" 2015



информационно-техническое обеспечение
  1. Демонстрационный вариант контрольных измерительных материалов для проведения в 2015 году основного государственного экзамена по математике находятся на сайте Федерального института педагогических измерений (ФИПИ) (http://fipi.ru).

  2. Регламент по итоговой аттестации обучающихся 9 классов по всем предметам можно скачать здесь http://saripkro.ru/itog_att.html

  3. Официальный информационный портал поддержки ГИА.  Здесь можно найти информацию о проведении ГИА, о сроках сдачи ГИА и многое другое... http://www1.ege.edu.ru/content/view/763/201/

  4. Сайт А.А.Ларина http://alexlarin.net/ege.html

  5. 9 класс. Открытый банк заданий ОГЭ по математике.

  6. Варианты тестов. http://www.ctege.info/content/category/15/67/48/

  7. Сайт Ким Натальи Анатольевны http://uztest.ru/exam

  8. Тестирование http://www.mathtest.ru/

  9. Тестирование http://www.school-tests.ru/online-ege-math.html

  10. Тестирование http://reshuege.ru/