На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.
1. Строится двоичная запись числа N.
2. К этой записи дописываются справа ещё два разряда по следующему правилу:
а) складываются все цифры двоичной записи , и остаток от деления суммы на 2 дописывается в конец числа (справа). Например, запись 11100 преобразуется в запись 111001;
б) над этой записью производятся те же действия – справа дописывается остаток от деления суммы цифр на 2.
Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа N) является двоичной записью искомого числа R. Укажите такое наименьшее число R , которое превышает 118 и может являться результатом работы алгоритма. В ответе это число запишите в десятичной системе счисления.
На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.
1. Строится двоичная запись числа N.
2. К этой записи дописываются справа ещё два разряда по следующему правилу:
а) складываются все цифры двоичной записи, и остаток от деления суммы на 2 дописывается в конец числа (справа). Например, запись 11100 преобразуется в запись 111001;
б) над этой записью производятся те же действия – справа дописывается остаток от деления суммы цифр на 2.
Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа N) является двоичной записью искомого числа R. Укажите такое наименьшее число R , которое превышает 130 и может являться результатом работы алгоритма. В ответе это число запишите в десятичной системе счисления.
На вход алгоритма подается натуральное число N. Алгоритм строит по нему новое число R следующим образом:
1. Строится двоичная запись числа N.
2. К этой записи дописываются справа еще два разряда по следующему правилу:
— если N делится нацело на 4 , в конец числа (справа) дописывается сначала ноль, а затем еще один нол ь;
— если N при делении на 4 дает в остатке 1 , то в конец числа (справа) дописывается сначала ноль, а затем единица;
— если N при делении на 4 дает в остатке 2 , то в конец числа (справа) дописывается сначала один, а затем ноль;
— если N при делении на 4 дает в остатке 3, в конец числа (справа) дописывается сначала один, а затем еще одна единица.
Например, двоичная запись 1001 числа 9 будет преобразована в 100101, а двоичная запись 1100 числа 12 будет преобразована в 110000.
Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа N) является двоичной записью числа R — результата работы данного алгоритма.
Укажите максимальное число R, которое меньше 100 и может являться результатом работы данного алгоритма. В ответе это число запишите в десятичной системе счисления.
На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом:
1. Строится двоичная запись числа N.
2. К этой записи дописывается (дублируется) последняя цифра .
3. Затем справа дописывается бит чётности: 0, если в двоичном коде полученного числа чётное число единиц , и 1, если нечётное.
4. К полученному результату дописывается ещё один бит чётности .
Полученная таким образом запись (в ней на три разряда больше, чем в записи исходного числа N) является двоичной записью искомого числа R.
Укажите минимальное число R, большее 114, которое может быть получено в результате работы этого алгоритма. В ответе это число запишите в десятичной системе.
Автомат обрабатывает целое число N (0 ≤ N ≤ 255) по следующему алгоритму:
1. Строится восьмибитная двоичная запись числа N.
2. Все цифры двоичной записи заменяются на противоположные (0 на 1, 1 на 0).
3. Полученное число переводится в десятичную запись.
4. Из нового числа вычитается исходное, полученная разность выводится на экран.
Какое число нужно ввести в автомат, чтобы в результате получилось 45?
Решение на Python
Задача № 8094 решу ЕГЭ
На вход алгоритма подаётся натуральное число N . Алгоритм строит по нему новое число R следующим образом.
1) Строится двоичная запись числа N .
2) К этой записи дописываются справа ещё два разряда по следующему правилу:
- 1) Строится двоичная запись числа N . 2) К этой записи дописываются справа ещё два разряда по следующему правилу:
а) складываются все цифры двоичной записи, и остаток от деления суммы на 2 дописывается в конец числа (справа). Например, запись 11100 преобразуется в запись 111001;
б) над этой записью производятся те же действия — справа дописывается остаток от деления суммы цифр на 2.
- а) складываются все цифры двоичной записи, и остаток от деления суммы на 2 дописывается в конец числа (справа). Например, запись 11100 преобразуется в запись 111001; б) над этой записью производятся те же действия — справа дописывается остаток от деления суммы цифр на 2.
- а) складываются все цифры двоичной записи, и остаток от деления суммы на 2 дописывается в конец числа (справа). Например, запись 11100 преобразуется в запись 111001; б) над этой записью производятся те же действия — справа дописывается остаток от деления суммы цифр на 2.
Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа N ) является двоичной записью искомого числа R .
Укажите минимальное число R , которое превышает 43 и может являться результатом работы алгоритма. В ответе это число запишите в десятичной системе.
Задача № 8094 решу ЕГЭ
Решение
Если в числе было нечётное количество единиц, то в конец допишется 10. Если количество единиц чётное, то допишется 00. Рассмотрим числа, большие 43. Имеем:
44 10 = 101100 2 — не может являться результатом работы алгоритма,
45 10 = 101101 2 — не может являться результатом работы алгоритма,
46 10 = 101110 2 — может являться результатом работы алгоритма, количество единиц (кроме последних двух разрядов) нечетное, и в последних двух разрядах 10.
Ответ: 46.
43: print(r) break " width="640"
Задача № 8094 решу ЕГЭ
def f(s):
summa = 0
for i in range(len(s)):
summa += int(s[i])
return summa
for n in range(1, 100):
s = bin(n)[2:] # перевод в двоичную систему
s = str(s)
summa = f(s)
s = s + str(summa % 2)
summa = f(s)
s = s + str(summa % 2)
r = int(s, 2) # перевод в десятичную систему
if r 43:
print(r)
break
Задача № 36018 решу ЕГЭ
На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.
1. Строится двоичная запись числа N.
2. К этой записи дописываются справа ещё два разряда по следующему правилу:
а) складываются все цифры двоичной записи числа N, и остаток от деления суммы на 2 дописывается в конец числа (справа). Например, запись 11100 преобразуется в запись 111001;
б) над этой записью производятся те же действия — справа дописывается остаток от деления суммы её цифр на 2.
- а) складываются все цифры двоичной записи числа N, и остаток от деления суммы на 2 дописывается в конец числа (справа). Например, запись 11100 преобразуется в запись 111001; б) над этой записью производятся те же действия — справа дописывается остаток от деления суммы её цифр на 2.
Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа N) является двоичной записью искомого числа R. Укажите минимальное число R, которое превышает число 396 и может являться результатом работы данного алгоритма. В ответе это число запишите в десятичной системе счисления.
Задача № 36018 решу ЕГЭ
Решение
Заметим, что 396 10 = 110001100 2 , исходное число N — 1100011 2 . Значит, в результате работы алгоритма не может получится двоичных чисел 110001101 2 , 110001110 2 и 110001111 2 . Рассмотрим следующее число N — 1100100 2 . В результате работы алгоритма получится число 110010010 2 = 402 10 . Это и будет ответ.
Ответ: 402.
Задача № 36018 решу ЕГЭ
Задача № 45239 решу ЕГЭ
На вход алгоритма подаётся натуральное число N . Алгоритм строит по нему новое число R следующим образом.
1. Строится двоичная запись числа N .
2. Далее эта запись обрабатывается по следующему правилу:
а) если число чётное, то к двоичной записи числа слева дописывается 10;
б) если число нечётное, то к двоичной записи числа слева дописывается 1 и справа дописывается 01.
- а) если число чётное, то к двоичной записи числа слева дописывается 10; б) если число нечётное, то к двоичной записи числа слева дописывается 1 и справа дописывается 01.
Полученная таким образом запись является двоичной записью искомого числа R.
Например , для исходного числа 4 10 = 100 2 результатом будет являться число 20 10 = 10100 2 , а для исходного числа 5 10 = 101 2 результатом будет являться число 53 10 = 110101 2 .
Укажите минимальное число N , после обработки которого с помощью этого алгоритма получается число R , большее, чем 441. В ответе запишите это число в десятичной системе счисления.
441: a.append(n) print(min(a)) " width="640"
Задача № 45239 решу ЕГЭ
a = []
for n in range(1, 100):
s = bin(n)[2:] # перевод в двоичную систему
s = str(s)
if n % 2 == 0:
s += "10"
else:
s = "1" + s + "01"
r = int(s, 2) # перевод в десятичную систему
if r 441:
a.append(n)
print(min(a))
Задача № 15622 решу ЕГЭ
На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.
1. Строится двоичная запись числа N.
2. К этой записи дописываются справа ещё два разряда по следующему правилу: складываются все цифры двоичной записи, если
а) сумма нечетная к числу дописывается 11,
б) сумма четная, дописывается 00.
- а) сумма нечетная к числу дописывается 11, б) сумма четная, дописывается 00.
Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа N) является двоичной записью искомого числа R. Укажите такое наименьшее число R, которое превышает 114 и может являться результатом работы алгоритма. В ответе это число запишите в десятичной системе счисления.
Задача № 15622 решу ЕГЭ
Решение
Переведем число 11410 в двоичную систему: 11410 = 111 00102. Отсюда узнаем число на входе — 111002. Следуя алгоритму, нужно проверить четность единиц. Количество единиц нечетно, следовательно, нужно добавить две единицы. Получаем число 115, оно и является ответом, так как оно больше 114 и наименьшее из возможных.
Ответ: 115.
Задача № 15622 решу ЕГЭ