СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до 31.05.2025

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Задание 18 ЕГЭ-2015.

Категория: Математика

Нажмите, чтобы узнать подробности

Презентация для учащихся 11 класса содержит примеры заданий 18 второй части  ЕГЭ по математике с решением. Будет полезна выпускникам при подготовке к Единому Государственному Экзамену.

Просмотр содержимого документа
«Задание 18 ЕГЭ-2015.»

Задание 18 ЕГЭ-2015 Иванова Е.Н. МБОУ СОШ №8 г. Каменск-Шахтинский

Задание 18 ЕГЭ-2015

Иванова Е.Н.

МБОУ СОШ №8

г. Каменск-Шахтинский

Задача 1. Прямая касается окружностей радиусов R и r в точках A и B . Известно, что расстояние между центрами окружностей равно a , причем r R и r + R a . Найдите AB .  Решение. Пусть O 1 – центр окружности радиуса R , O 2 – центр окружности радиуса r . Возможны два случая: AB – внешняя касательная, AB – внутренняя касательная. В первом случае (рис. 1) через точку O 2 проведем прямую, параллельную AB , и обозначим P ее точку пересечения с прямой O 1 A . Тогда AB = Во втором случае (рис. 2) через точку O 2 проведем прямую, параллельную AB , и обозначим P ее точку пересечения с прямой O 1 A . Тогда AB = Ответ. или .

Задача 1. Прямая касается окружностей радиусов R и r в точках A и B . Известно, что расстояние между центрами окружностей равно a , причем r R и r + R a . Найдите AB .

Решение. Пусть O 1 – центр окружности радиуса R , O 2 – центр окружности радиуса r . Возможны два случая: AB – внешняя касательная, AB – внутренняя касательная.

В первом случае (рис. 1) через точку O 2 проведем прямую, параллельную AB , и обозначим P ее точку пересечения с прямой O 1 A . Тогда AB =

Во втором случае (рис. 2) через точку O 2 проведем прямую, параллельную AB , и обозначим P ее точку пересечения с прямой O 1 A . Тогда AB =

Ответ. или .

Задача 2. Трапеция с основаниями 14 и 40 вписана в окружность радиуса 25. Найдите высоту трапеции. Решение. Пусть ABCD – трапеция, вписанная в окружность с центром O и радиусом 25. Возможны два случая: основания AB и CD трапеции расположены по одну сторону от центра O , основания AB и CD расположены по разные стороны от центра O . В первом случае (рис. 1) через точку O проведем прямую, перпендикулярную AB , и обозначим P , Q ее точки пересечения соответственно с AB и CD . Тогда высота PQ трапеции равна OQ – OP . Имеем OQ = OP =   Следовательно, PQ = 9. Во втором случае (рис. 2) через точку O проведем прямую, перпендикулярную AB , и обозначим P , Q ее точки пересечения соответственно с AB и CD . Тогда высота PQ трапеции равна OQ + OP . Имеем OQ = OP =   Следовательно, PQ = 39. Ответ. 9 или 39.

Задача 2. Трапеция с основаниями 14 и 40 вписана в окружность радиуса 25. Найдите высоту трапеции.

Решение. Пусть ABCD – трапеция, вписанная в окружность с центром O и радиусом 25. Возможны два случая: основания AB и CD трапеции расположены по одну сторону от центра O , основания AB и CD расположены по разные стороны от центра O .

В первом случае (рис. 1) через точку O проведем прямую, перпендикулярную AB , и обозначим P , Q ее точки пересечения соответственно с AB и CD . Тогда высота PQ трапеции равна OQ – OP . Имеем OQ = OP = Следовательно, PQ = 9.

Во втором случае (рис. 2) через точку O проведем прямую, перпендикулярную AB , и обозначим P , Q ее точки пересечения соответственно с AB и CD . Тогда высота PQ трапеции равна OQ + OP . Имеем OQ = OP = Следовательно, PQ = 39.

Ответ. 9 или 39.

Задача 3. Окружности с центрами O 1  и O 2 пересекаются в точках A и B . Известно, что угол AO 1 B равен 90 о , угол AO 2 B равен 60 о , O 1 O 2 = a . Найдите радиусы окружностей. Решение. Возможны два случая: точки O 1 , O 2 расположены по разные стороны от прямой AB ,  точки O 1 , O 2 расположены по одну сторону от прямой AB . Обозначим r радиус окружности с центром O 1 . Тогда радиус окружности с центром O 2 будет равен . Обозначим P точку пересечения прямых O 1 O 2 и AB . Тогда O 1 P = , O 2 P = . В первом случае (рис. 1) и, следовательно,  Во втором случае (рис. 2) и, следовательно,   Ответ. или

Задача 3. Окружности с центрами O 1 и O 2 пересекаются в точках A и B . Известно, что угол AO 1 B равен 90 о , угол AO 2 B равен 60 о , O 1 O 2 = a . Найдите радиусы окружностей.

Решение. Возможны два случая: точки O 1 , O 2 расположены по разные стороны от прямой AB , точки O 1 , O 2 расположены по одну сторону от прямой AB . Обозначим r радиус окружности с центром O 1 . Тогда радиус окружности с центром O 2 будет равен . Обозначим P точку пересечения прямых O 1 O 2 и AB . Тогда O 1 P = , O 2 P = .

В первом случае (рис. 1)

и, следовательно,

Во втором случае (рис. 2)

и, следовательно,

Ответ. или

Задача 4. Около треугольника ABC описана окружность с центром O , угол AOC равен 60 о . В треугольник ABC вписана окружность с центром M . Найдите угол AMC . Решение. Возможны два случая расположения вершины B треугольника ABC . В первом случае (рис. 1) сумма углов A и C треугольника ABC равна 150 о . Так как AM и CM – биссектрисы этих углов, то сумма углов CAM и ACM равна 75 о и, следовательно, угол AMC равен 105 о . Во втором случае (рис. 2) сумма углов A и C треугольника ABC равна 30 о . Так как AM и CM – биссектрисы этих углов, то сумма углов CAM и ACM равна 15 о и, следовательно, угол AMC равен 165 о . Ответ. 105 о или 165 о .

Задача 4. Около треугольника ABC описана окружность с центром O , угол AOC равен 60 о . В треугольник ABC вписана окружность с центром M . Найдите угол AMC .

Решение. Возможны два случая расположения вершины B треугольника ABC .

В первом случае (рис. 1) сумма углов A и C треугольника ABC равна 150 о . Так как AM и CM – биссектрисы этих углов, то сумма углов CAM и ACM равна 75 о и, следовательно, угол AMC равен 105 о .

Во втором случае (рис. 2) сумма углов A и C треугольника ABC равна 30 о . Так как AM и CM – биссектрисы этих углов, то сумма углов CAM и ACM равна 15 о и, следовательно, угол AMC равен 165 о .

Ответ. 105 о или 165 о .

Задача 5. Треугольник ABC вписан в окружность радиуса 12. Известно, что AB = 6 и BC = 4. Найдите AC . Решение. По теореме синусов Откуда  Возможны два случая расположения вершины C треугольника ABC . Опустим перпендикуляр BH на прямую AC . Тогда BH = AB sin A = 1. По теореме Пифагора AH = CH = В первом случае (рис. 1) AC = Во втором случае (рис. 2) AC = Ответ. или

Задача 5. Треугольник ABC вписан в окружность радиуса 12. Известно, что AB = 6 и BC = 4. Найдите AC .

Решение. По теореме синусов Откуда

Возможны два случая расположения вершины C треугольника ABC .

Опустим перпендикуляр BH на прямую AC . Тогда BH = AB sin A = 1. По теореме Пифагора AH = CH = В первом случае (рис. 1)

AC = Во втором случае (рис. 2) AC =

Ответ. или

Задача 6. Прямые, содержащие высоты треугольника ABC пересекаются в точке H . Известно, что CH = AB . Найдите угол ACB . Решение. Пусть AA 1 , BB 1 – высоты треугольника ABC .  Опишем окружности на CH и AB как на диаметрах. Они пройдут через точки A 1 и B 1 . Возможны два случая расположения точки H . В первом случае (рис. 1) угол C равен углу CAA 1 , как вписанные углы, опирающиеся на равные дуги. Следовательно, угол C равен 45 о . Во втором случае (рис. 2) угол C равен 135 о . Ответ. 45 о или 135 о .

Задача 6. Прямые, содержащие высоты треугольника ABC пересекаются в точке H . Известно, что CH = AB . Найдите угол ACB .

Решение. Пусть AA 1 , BB 1 – высоты треугольника ABC . Опишем окружности на CH и AB как на диаметрах. Они пройдут через точки A 1 и B 1 . Возможны два случая расположения точки H .

В первом случае (рис. 1) угол C равен углу CAA 1 , как вписанные углы, опирающиеся на равные дуги. Следовательно, угол C равен 45 о . Во втором случае (рис. 2) угол C равен 135 о .

Ответ. 45 о или 135 о .

Задача 7. В треугольнике ABC проведены высоты BB 1 и CC 1 , O – центр вписанной окружности. Известно, что BC = 24, B 1 C 1 = 12. Найдите радиус R окружности, описанной около треугольника BOC . Решение. Возможны два случая расположения отрезка B 1 C 1 . На BC ,  как на диаметре, опишем окружность с центром P . Треугольник B 1 C 1 P равносторонний. Следовательно, сумма углов BPB 1 и CPC 1 равна 120 о .  В первом случае (рис. 1) треугольники BPC 1 и CPB 1   равнобедренные. Следовательно, сумма углов B и C равна 120 о . Так как BO и CO – биссектрисы, то угол BOC равен 120 о . По теореме синусов находим R = .  Во втором случае (рис. 2) сумма углов B и C равна 60 о . Так как BO и CO – биссектрисы, то угол BOC равен 150 о . По теореме синусов находим R = 24.  Ответ. или 24.

Задача 7. В треугольнике ABC проведены высоты BB 1 и CC 1 , O – центр вписанной окружности. Известно, что BC = 24, B 1 C 1 = 12. Найдите радиус R окружности, описанной около треугольника BOC .

Решение. Возможны два случая расположения отрезка B 1 C 1 .

На BC , как на диаметре, опишем окружность с центром P . Треугольник B 1 C 1 P равносторонний. Следовательно, сумма углов BPB 1 и CPC 1 равна 120 о . В первом случае (рис. 1) треугольники BPC 1 и CPB 1 равнобедренные. Следовательно, сумма углов B и C равна 120 о . Так как BO и CO – биссектрисы, то угол BOC равен 120 о . По теореме синусов находим R = .

Во втором случае (рис. 2) сумма углов B и C равна 60 о . Так как BO и CO – биссектрисы, то угол BOC равен 150 о . По теореме синусов находим R = 24.

Ответ. или 24.

Задача 8. В трапеции ABCD известны боковые стороны AB = 27, CD = 28. Основание BC равно 5, косинус угла BCD равен –2/7. Найдите AC . Решение. Возможны два случая. В первом случае (рис. 1) DF = 8, CF = BE =  , AE = 3. Следовательно, AC = 28. Во втором случае (рис. 2) DF = 8, CF = BE = , AE = 3. Следовательно, AC = . Ответ. 28 или .

Задача 8. В трапеции ABCD известны боковые стороны AB = 27, CD = 28. Основание BC равно 5, косинус угла BCD равен –2/7. Найдите AC .

Решение. Возможны два случая.

В первом случае (рис. 1) DF = 8, CF = BE = , AE = 3. Следовательно, AC = 28.

Во втором случае (рис. 2) DF = 8, CF = BE = , AE = 3. Следовательно, AC = .

Ответ. 28 или .


Скачать

Рекомендуем курсы ПК и ППК для учителей

Вебинар для учителей

Свидетельство об участии БЕСПЛАТНО!