Закон чистоты гамет
Мендель предположил, что наследственные факторы при образовании гибридов не смешиваются, а сохраняются в неизменном виде. В теле гибрида F1 от скрещивания родителей, различающихся по альтернативным признакам, присутствуют оба фактора — доминантный и рецессивный. В виде признака проявляется доминантный наследственный фактор, рецессивный же подавляется.
Связь между поколениями при половом размножении осуществляется через половые клетки — гаметы. Следовательно, необходимо допустить, что каждая гамета несет только один фактор из пары. Тогда при оплодотворении и слиянии двух гамет, каждая из которых несет рецессивный наследственный фактор, приводит к образованию организма с рецессивным признаком, проявляющимся фенотипически .
Слияние же гамет, несущих по доминантному фактору, или же двух гамет, одна из которых содержит доминантный, а другая рецессивный фактор, будет приводить к развитию организма с доминантным признаком. Таким образом, появление во втором поколении (F2) рецессивного признака одного из родителей (Р) может иметь место только при соблюдении двух условий: 1) если у гибридов наследственные факторы сохраняются в неизменном виде 2) если половые клетки содержат только один наследственный фактор из аллельной пары.
Расщепление признаков в потомстве при скрещивании гетерозиготных особей Мендель объяснил тем, что гаметы генетически чисты, т. е. несут только один ген из аллельной пары. Закон чистоты гамет можно сформулировать следующим образом: при образовании половых клеток в каждую гамету попадает только один ген из аллельной пары.
Почему и как это происходит? Известно, что в каждой клетке организма имеется совершенно одинаковый диплоидный набор хромосом. Две гомологичные хромосомы содержат два одинаковых аллельных гена.
Образование генетически «чистых» гамет показано на схеме:
:
При слиянии мужских и женских гамет образуется гибрид F1, имеющий диплоидный набор хромосом
Как видно из схемы, половину хромосом зигота получает от отцовского организма, половину — от материнского.
В процессе образования гамет у гибрида гомологичные хромосомы во время первого мейотического деления также попадают в разные клетки:
Образуются два сорта гамет по данной аллельной паре. При оплодотворении гаметы, несущие одинаковые или разные аллели, случайно встречаются друг с другом. В силу статистической вероятности при достаточно большом количестве гамет в потомстве 25% генотипов будут гомозиготными доминантными, 50% - гетерозиготными, 25% — гомозиготными рецессивными, т. е. устанавливается отношение: 1АА:2Аа:1аа.
Соответственно по фенотипу потомство второго поколения при моногибридном скрещивании распределяется в отношении 3 / 4 ; особей с доминантным признаком, 1 / 4 особей с рецессивным признаком (3:1).
Распределение фенотипов и генотипов в потомстве при скрещивании двух гетерозиготных организмов изображено на схеме ниже.
Таким образом, цитологической основой расщепления признаков у потомства при моногибридном скрещивании является расхождение гомологичных хромосом и образование гаплоидных половых клеток в мейозе.