СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

"Закон чистоты гамет"

Категория: Биология

Нажмите, чтобы узнать подробности

Данную презентацию можно использовать при изучении законов Г. Менделя в 9 классе

Просмотр содержимого документа
«"Закон чистоты гамет"»

Закон чистоты гамет

Закон чистоты гамет

Мендель предположил, что наследственные факторы при образовании гибридов не смешиваются, а сохраняются в не­изменном виде. В теле гибрида F1 от скрещивания роди­телей, различающихся по альтернативным признакам, присутствуют оба фактора — доминантный и рецессивный. В виде признака проявляется доминантный наследственный фактор, рецессивный же подавляется.

Мендель предположил, что наследственные факторы при образовании гибридов не смешиваются, а сохраняются в не­изменном виде. В теле гибрида F1 от скрещивания роди­телей, различающихся по альтернативным признакам, присутствуют оба фактора — доминантный и рецессивный. В виде признака проявляется доминантный наследственный фактор, рецессивный же подавляется.

    Связь между поколе­ниями при половом размножении осуществляется через по­ловые клетки — гаметы. Следовательно, необходимо допус­тить, что каждая гамета несет только один фактор из пары. Тогда при оплодотворении и слиянии двух гамет, каждая из которых несет рецессивный наследственный фактор, при­водит к образованию организма с рецессивным признаком, проявляющимся фенотипически .

Связь между поколе­ниями при половом размножении осуществляется через по­ловые клетки — гаметы. Следовательно, необходимо допус­тить, что каждая гамета несет только один фактор из пары. Тогда при оплодотворении и слиянии двух гамет, каждая из которых несет рецессивный наследственный фактор, при­водит к образованию организма с рецессивным признаком, проявляющимся фенотипически .

Слияние же гамет, несущих по доминантному фактору, или же двух гамет, одна из которых содержит доминантный, а другая рецессивный фактор, будет приводить к развитию организма с доминантным признаком. Таким образом, появление во втором поколении (F2) рецессивного признака одного из родителей (Р) может иметь место только при соблюдении двух условий:  1) если у гибридов наследственные факторы сохраняются в неизменном виде  2) если половые клетки содержат только один наследственный фактор из аллельной пары.

Слияние же гамет, несущих по доминантному фактору, или же двух гамет, одна из которых содержит доминантный, а другая рецессивный фактор, будет приводить к развитию организма с доминантным признаком. Таким образом, появление во втором поколении (F2) рецессивного признака одного из родителей (Р) может иметь место только при соблюдении двух условий: 1) если у гибридов наследственные факторы сохраняются в неизменном виде 2) если половые клетки содержат только один наследственный фактор из аллельной пары.

Расщепление признаков в потомстве при скрещивании гетерозиготных особей Мендель объяснил тем, что гаметы генетически чисты, т. е. несут только один ген из аллельной пары. Закон чистоты гамет можно сформулировать следующим образом: при образовании половых клеток в каждую гамету попадает только один ген из аллельной пары. Почему и как это происходит? Известно, что в каждой клетке организма имеется совершенно одинаковый диплоидный набор хромосом. Две гомологичные хромосомы содержат два одинаковых аллельных гена.

Расщепление признаков в потомстве при скрещивании гетерозиготных особей Мендель объяснил тем, что гаметы генетически чисты, т. е. несут только один ген из аллельной пары. Закон чистоты гамет можно сформулировать следующим образом: при образовании половых клеток в каждую гамету попадает только один ген из аллельной пары.

Почему и как это происходит? Известно, что в каждой клетке организма имеется совершенно одинаковый диплоидный набор хромосом. Две гомологичные хромосомы содержат два одинаковых аллельных гена.

Образование генетически «чистых» гамет показано на схеме:

Образование генетически «чистых» гамет показано на схеме:

: При слиянии мужских и женских гамет образуется гибрид F1, имеющий диплоидный набор хромосом

:

При слиянии мужских и женских гамет образуется гибрид F1, имеющий диплоидный набор хромосом

Как видно из схемы, половину хромосом зигота получает от отцовского организма, половину — от материнского. В процессе образования гамет у гибрида гомологичные хромосомы во время первого мейотического деления также попадают в разные клетки:

Как видно из схемы, половину хромосом зигота получает от отцовского организма, половину — от материнского.

В процессе образования гамет у гибрида гомологичные хромосомы во время первого мейотического деления также попадают в разные клетки:

Образуются два сорта гамет по данной аллельной паре. При оплодотворении гаметы, несущие одинаковые или раз­ные аллели, случайно встречаются друг с другом. В силу статистической вероятности при достаточно большом коли­честве гамет в потомстве 25% генотипов будут гомозиготны­ми доминантными, 50% - гетерозиготными, 25% — гомо­зиготными рецессивными, т. е. устанавливается отношение: 1АА:2Аа:1аа. Соответственно по фенотипу потомство второго поколе­ния при моногибридном скрещивании распределяется в от­ношении  3 / 4 ;  особей с доминантным признаком,  1 / 4  особей с рецессивным признаком (3:1). Распределение фенотипов и генотипов в потомстве при скрещивании двух гетерозиготных организмов изображено на схеме ниже.

Образуются два сорта гамет по данной аллельной паре. При оплодотворении гаметы, несущие одинаковые или раз­ные аллели, случайно встречаются друг с другом. В силу статистической вероятности при достаточно большом коли­честве гамет в потомстве 25% генотипов будут гомозиготны­ми доминантными, 50% - гетерозиготными, 25% — гомо­зиготными рецессивными, т. е. устанавливается отношение: 1АА:2Аа:1аа.

Соответственно по фенотипу потомство второго поколе­ния при моногибридном скрещивании распределяется в от­ношении  3 / 4 ;  особей с доминантным признаком,  1 / 4  особей с рецессивным признаком (3:1).

Распределение фенотипов и генотипов в потомстве при скрещивании двух гетерозиготных организмов изображено на схеме ниже.

Таким образом, цитологической основой расщепления признаков у потомства при моногибридном скрещивании является расхождение гомологичных хромосом и образова­ние гаплоидных половых клеток в мейозе.

Таким образом, цитологической основой расщепления признаков у потомства при моногибридном скрещивании является расхождение гомологичных хромосом и образова­ние гаплоидных половых клеток в мейозе.


Скачать

Рекомендуем курсы ПК и ППК для учителей

Вебинар для учителей

Свидетельство об участии БЕСПЛАТНО!