СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ
Благодаря готовым учебным материалам для работы в классе и дистанционно
Скидки до 50 % на комплекты
только до
Готовые ключевые этапы урока всегда будут у вас под рукой
Организационный момент
Проверка знаний
Объяснение материала
Закрепление изученного
Итоги урока
Математические алгоритмы
Изобилие математических алгоритмов особенно бросается в глаза: алгоритмы вычитания десятичных положительных дробей, умножение десятичных дробей (столбиком), деление десятичных дробей и т.д. и т.п.
Ещё раннее каждый школьник изучает алгоритмы сложения натуральных чисел, вычитания натуральных чисел, таблицу умножения.
Знание алгоритмов поможет избежать многих вычислительных ошибок. Остановимся на алгоритмах, изучаемых в пятом и шестом классах. Итак,
5 класс
Алгоритмы арифметических действий:
Алгоритм умножения числа на произведение (сочетательное свойство умножения)
Чтобы умножить число на произведение двух чисел, можно сначала умножить его на первый множитель, а потом полученное произведение умножить на второй множитель.
Алгоритм вычитания суммы
Для того чтобы вычесть сумму из числа, можно вначале вычесть из этого числа первое слагаемое, а потом из полученной разности – второе слагаемое;
Алгоритм вычитания числа из суммы
Чтобы из суммы вычесть число, можно вычесть его из одного слагаемого, а к полученной разности прибавить второе слагаемое.
Алгоритм умножения числа на произведение (сочетательное свойство умножения)
Чтобы умножить число на произведение двух чисел, можно сначала умножить его на первый множитель, а потом полученное произведение умножить на второй множитель.
Алгоритм умножения суммы на число (распределительное тельное свойство умножения относительно сложения)
Для того чтобы умножить сумму на число, можно умножить на это число каждое слагаемое и сложить получившиеся произведения.
Алгоритм умножения разности на число (распределительное тельное свойство умножения относительно вычитания)
Для того, чтобы умножить разность на число, можно умножить на это число уменьшаемое и вычитаемое и из первого произведения вычесть второе.
Алгоритмы при решении уравнений:
Алгоритм нахождения неизвестного слагаемого
Чтобы найти неизвестное слагаемое, надо их суммы вычесть известное слагаемое.
Алгоритм нахождения неизвестного уменьшаемого
Чтобы найти неизвестное уменьшаемое, надо сложить вычитаемое и разность.
Алгоритм нахождения неизвестного вычитаемого
Чтобы найти неизвестное вычитаемое, надо из уменьшаемого вычесть и разность.
Алгоритм нахождения неизвестного множителя
Чтобы найти неизвестный множитель, надо произведение разделить на известный множитель.
Алгоритм нахождения неизвестного делимого
Чтобы найти неизвестное делимое, надо частное умножить на делитель.
Алгоритм нахождения неизвестного делителя
Чтобы найти неизвестный делитель, надо делимое разделить на частное.
Алгоритм решения задач с помощью уравнения
1. Прочитать внимательно условие задачи;
2. Записать кратко условие задачи, записав все величины (единицы их измерения), названные в задаче, установив связи и зависимости между ними;
3.Выбрать неизвестное задачи;
4. Выразить остальные величины задачи, установить связи их с неизвестным задачи;
5. Составить уравнение задачи, обосновав его условием задачи;
6. Решить уравнение;
7. Сделать проверку;
8. Выписать ответ.
Алгоритм выполнения порядка действий
1. Если в выражении нет скобок, и оно содержит действия только одной ступени, то их выполняют по порядку слева направо.
2. Если выражение содержит действия первой (сложение и вычитание) и второй (умножение и деление) ступени и в нем нет скобок, то сначала выполняют действия второй ступени, а потом – действия первой ступени.
3. Если в выражении есть скобки, то сначала выполняют действия в скобках (учитывая при этом правила 1 и 2).
Алгоритмы для обыкновенных дробей
Алгоритм сравнения дробей с одинаковыми знаменателями
а) Выбрать наибольшую дробь с одинаковыми знаменателями ту, у которой больше числитель;
б) Выбрать наименьшую дробь с одинаковыми знаменателями ту, у которой меньше числитель.
© 2024, Радева Татьяна Афанасьевна 80