СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

2022 ЕГЭ Май Информатика Вариант 7

Категория: Информатика

Нажмите, чтобы узнать подробности

Задание 1 № 19052

На рисунке схема дорог Н-ского района изображена в виде графа, в таблице содержатся сведения о протяжённости каждой из этих дорог (в километрах).

 

 

 

 

 

  П1 П2 П3 П4 П5 П6 П7
П1       9     7
П2       5   11  
П3           12  
П4 9 5     4 13 15
П5       4   10 8
П6   11 12 13 10    
П7 7     15 8    

 

Так как таблицу и схему рисовали независимо друг от друга, то нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Определите, какова протяжённость дороги из пункта Д в пункт Е. В ответе запишите целое число — так, как оно указано в таблице.

2. Задание 2 № 18483

Логическая функция F задаётся выражением ((y → w) ≡ (x → ¬z)) ∧ (x ∨ w).

Дан частично заполненный фрагмент, содержащий неповторяющиеся строки таблицы истинности функции F.

Определите, какому столбцу таблицы истинности соответствует каждая из переменных xyzw.

 

 

 

 

 

 

Переменная 1 Переменная 2 Переменная 3 Переменная 4 Функция
??? ??? ??? ??? F
0 1 1 1 0
1 0 1 0 1
  0 0   1

 

В ответе напишите буквы xyzw в том порядке, в котором идут соответствующие им столбцы (сначала буква, соответствующая первому столбцу; затем буква, соответствующая второму столбцу, и т. д.). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

Пример. Пусть задано выражение x → y, зависящее от двух переменных x и y, и фрагмент таблицы истинности:

 

 

 

Переменная 1 Переменная 1 Функция
??? ??? F
0 1 0

 

Тогда первому столбцу соответствует переменная y, а второму столбцу соответствует переменная x. В ответе нужно написать: yx.

3. Задание 3 № 37492

В файле приведён фрагмент базы данных «Продукты» о поставках товаров в магазины районов города. База данных состоит из трёх таблиц.

 

3.xlsx

 

Таблица «Движение товаров» содержит записи о поставках товаров в магазины в течение первой декады июня 2021 г., а также информацию о проданных товарах. Поле Тип операции содержит значение Поступление или Продажа, а в соответствующее поле Количество упаковок, шт. занесена информация о том, сколько упаковок товара поступило в магазин или было продано в течение дня. Заголовок таблицы имеет следующий вид.

 

 

ID операции Дата ID магазина Артикул Тип операции Количество упаковок, шт. Цена, руб./шт.

 

Таблица «Товар» содержит информацию об основных характеристиках каждого товара. Заголовок таблицы имеет следующий вид.

 

 

Артикул Отдел Наименование Ед. изм. Количество в упаковке Поставщик

 

Таблица «Магазин» содержит информацию о местонахождении магазинов. Заголовок таблицы имеет следующий вид.

 

 

ID магазина Район Адрес

 

На рисунке приведена схема указанной базы данных.

Используя информацию из приведённой базы данных, определите, сколько рублей потребовалось магазинам Первомайского района для закупки яиц диетических за период с 1 по 10 июня включительно.

В ответе запишите только число.

4. Задание 4 № 18074

Для кодирования некоторой последовательности, состоящей из букв К, Л, М, Н, П, Р решили использовать неравномерный двоичный код, удовлетворяющий условию Фано. Для букв К, Л, М, Н использовали соответственно кодовые слова 00, 01, 100, 110. Укажите кратчайшее возможное кодовое слово для буквы П, при котором код будет допускать однозначное декодирование. Если таких кодов несколько, укажите код с наименьшим числовым значением.

 

Примечание. Условие Фано означает, что ни одно кодовое слово не является началом другого кодового слова.

5. Задание 5 № 18075

На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.

1) Строится двоичная запись числа N.

2) К этой записи дописываются справа ещё два разряда по следующему правилу:

    а) находится остаток от деления на 2 суммы двоичных разрядов N, полученный результат дописывается в конец двоичной последовательности N.

    б) пункт а повторяется для вновь полученной последовательности.

Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа N) является двоичной записью искомого числа R. Укажите минимальное число R, которое превышает 123 и может являться результатом работы алгоритма. В ответе это число запишите в десятичной системе.

6. Задание 6 № 8096

Запишите число, которое будет напечатано в результате выполнения программы. Для Вашего удобства программа представлена на пяти языках программирования.

 

 

 

Бейсик Python

DIM S, N AS INTEGER

S = 301

N = 0

WHILE S > 0

    S = S - 10

    N = N + 2

WEND

PRINT N

 

s = 301

n = 0

while s > 0:

    s = s - 10

    n = n + 2

print(n)

 

 

Паскаль Алгоритмический язык

var s, n: integer;

begin

    s := 301;

    n := 0;

    while s > 0 do

    begin

        s := s - 10;

        n := n + 2;

    end;

    writeln(n)

end.

 

 

алг

нач

    цел n, s

    s := 301

    n := 0

    нц пока s > 0

        s := s - 10

        n := n + 2

    кц

    вывод n

кон

 

Си++

#include <iostream>

using namespace std;

int main()

{

    int s = 301, n = 0;

    while (s > 0) {

        s = s - 10;

        n = n + 2;

    }

    cout << n << endl;

    return 0;

}

 

 

7. Задание 7 № 2440

Сколько секунд потребуется модему, передающему сообщения со скоростью 19200 бит/с, чтобы передать цветное растровое изображение размером  пикселей, при условии, что цвет каждого пикселя кодируется 24 битами?

8. Задание 8 № 9194

Сколько слов длины 6, начинающихся и заканчивающихся согласной буквой, можно составить из букв Г, О, Д? Каждая буква может входить в слово несколько раз. Слова не обязательно должны быть осмысленными словами русского языка.

9. Задание 9 № 27518

Откройте файл электронной таблицы, содержащей вещественные числа — результаты ежечасного измерения температуры воздуха на протяжении трёх месяцев.

 

Задание 9

 

Найдите разность между минимальным значением температуры и её средним арифметическим значением. Ответ округлите до целого числа.

10. Задание 10 № 27581

С помощью текстового редактора определите, сколько раз, не считая сносок, встречается слово «день» или «День» в тексте романа в стихах А. С. Пушкина «Евгений Онегин». Другие формы слова «день», такие как «полдень», «дни» и т. д., учитывать не следует. В ответе укажите только число.

 

Задание 10

 

11. Задание 11 № 5996

В велокроссе участвуют 359 спортсменов. Специальное устройство регистрирует прохождение каждым из участников промежуточного финиша, записывая его номер с использованием минимально возможного количества бит, одинакового для каждого спортсмена. Какой объём памяти будет использован устройством, когда промежуточный финиш прошли 168 велосипедистов? (Ответ дайте в байтах.)

 

12. Задание 12 № 15951

Исполнитель Редактор получает на вход строку цифр и преобразует её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр.

А) заменить (vw).

Эта команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Например, выполнение команды

заменить (111, 27)

преобразует строку 05111150 в строку 0527150.

Если в строке нет вхождений цепочки v, то выполнение команды заменить (vw) не меняет эту строку.

Б) нашлось (v).

Эта команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Строка исполнителя при этом не изменяется.

 

Цикл

ПОКА условие

    последовательность команд

КОНЕЦ ПОКА

выполняется, пока условие истинно.

 

Какая строка получится в результате применения приведённой ниже программы к строке, состоящей из 98 единиц?

 

НАЧАЛО

    ПОКА нашлось (1111)

        заменить (1111, 22)

        заменить (222, 1)

    КОНЕЦ ПОКА

КОНЕЦ

13. Задание 13 № 29200

На рисунке — схема дорог, связывающих пункты А, Б, В, Г, Д, Е, Ж, И, К, Л, М, Н, П. По каждой дороге можно передвигаться только в направлении, указанном стрелкой. Укажите в ответе длину самого длинного пути из пункта А в пункт П. Длиной пути считается количество дорог, составляющих путь.

14. Задание 14 № 5363

Укажите наименьшее основание системы счисления, в которой запись десятичного числа 30 имеет ровно три значащих разряда.

15. Задание 15 № 17382

Для какого наименьшего целого неотрицательного числа A выражение

 

(5x + 3y ≠ 60) ∨ ((A > x) ∧ (A > y))

 

тождественно истинно при любых целых неотрицательных x и y?

16. Задание 16 № 6779

Алгоритм вычисления значений функций F(n) и G(n), где n — натуральное число, задан следующими соотношениями:

 

F(1) = 1; G(1) = 1;

F(n) = F(n – 1) – G(n – 1), G(n) = F(n–1) + G(n – 1), при n ≥ 2

 

Чему равно значение величины F(5)/G(5)? В ответе запишите только натуральное число.

17. Задание 17 № 39764

Файл содержит последовательность неотрицательных целых чисел, не превышающих 10 000. Назовём тройкой три идущих подряд элемента последовательности. Определите количество троек чисел таких, которые могут являться сторонами прямоугольного треугольника. В ответе запишите два числа: сначала количество найденных троек, а затем — максимальную сумму элементов таких троек. Если таких троек не найдётся — следует вывести 0 0.

 

Задание 17

 

Ответ:

 

18. Задание 18 № 27677

Квадрат разлинован на N×N клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз — в соседнюю нижнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.

 

Задание 18

 

Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную.

Исходные данные представляют собой электронную таблицу размером N×N, каждая ячейка которой соответствует клетке квадрата.

Пример входных данных:

 

1 8 8 4
10 1 1 3
1 3 12 2
2 3 5 6

 

Для указанных входных данных ответом должна быть пара чисел 41 и 22.

19. Задание 19 № 33098

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч (по своему выбору) один камень или увеличить количество камней в куче в три раза. Например, пусть в одной куче 7 камней, а в другой 9 камней; такую позицию мы будем обозначать (7, 9). За один ход из позиции (7, 9) можно получить любую из четырёх позиций: (8, 9), (21, 9), (7, 10), (7, 27). Чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 45. Победителем считается игрок, сделавший последний ход, т. е. первым получивший позицию, в которой в кучах будет 45 или больше камней.

В начальный момент в первой куче было 4 камня, во второй куче — S камней; 1 ≤ S ≤ 40.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по этой стратегии игрока, не являющиеся для него безусловно выигрышными, т. е. не являющиеся выигрышными независимо от игры противника.

Известно, что Ваня выиграл своим первым ходом после неудачного первого хода Пети. Укажите минимальное значение S, когда такая ситуация возможна

20. Задание 20 № 33099

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч (по своему выбору) один камень или увеличить количество камней в куче в три раза. Например, пусть в одной куче 7 камней, а в другой 9 камней; такую позицию мы будем обозначать (7, 9). За один ход из позиции (7, 9) можно получить любую из четырёх позиций: (8, 9), (21, 9), (7, 10), (7, 27). Чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 45. Победителем считается игрок, сделавший последний ход, т. е. первым получивший позицию, в которой в кучах будет 45 или больше камней.

В начальный момент в первой куче было 4 камня, во второй куче — S камней; 1 ≤ S ≤ 40.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по этой стратегии игрока, не являющиеся для него безусловно выигрышными, т. е. не являющиеся выигрышными независимо от игры противника.

Найдите два таких значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

— Петя не может выиграть за один ход;

— Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Найденные значения запишите в ответе в порядке возрастания без разделительных знаков.

21. Задание 21 № 33100

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч (по своему выбору) один камень или увеличить количество камней в куче в три раза. Например, пусть в одной куче 7 камней, а в другой 9 камней; такую позицию мы будем обозначать (7, 9). За один ход из позиции (7, 9) можно получить любую из четырёх позиций: (8, 9), (21, 9), (7, 10), (7, 27). Чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 45. Победителем считается игрок, сделавший последний ход, т. е. первым получивший позицию, в которой в кучах будет 45 или больше камней.

В начальный момент в первой куче было 4 камня, во второй куче — S камней; 1 ≤ S ≤ 40.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по этой стратегии игрока, не являющиеся для него безусловно выигрышными, т. е. не являющиеся выигрышными независимо от игры противника.

Найдите минимальное значение S, при котором одновременно выполняются два условия:

— у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

— у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

22. Задание 22 № 7931

Ниже на пяти языках записан алгоритм. Получив на вход число x, этот алгоритм печатает два числа a и b. Укажите наименьшее из таких чисел x, при вводе которого алгоритм печатает сначала 2, а потом 7.

 

 

 

Бейсик Python

DIM X, A, B AS INTEGER

INPUT X

A = 0: B = 1

WHILE X > 0

    A = A+1

    B = B * (X MOD 100)

    X = X\100

WEND

PRINT A

PRINT B

 

x = int(input())

a, b = 0, 1

while x > 0:

    a = a + 1

    b = b * (x%100)

    x = x//100

print(a)

print(b)

 

 

Паскаль Алгоритмический язык

var x, a, b: integer;

begin

    readln(x);

    a := 0; b := 1;

    while x > 0 do

        begin

            a := a+1;

            b := b*(x mod 100);

            x := x div 100;

        end;

    writeln(a); write(b);

end.

 

алг

нач

цел x, a, b

ввод x

a:=0; b:=1

нц пока x > 0

    a := a+1

    b := b*mod(x,100)

    x := div(x,100)

кц

вывод a, нс, b

кон

 

Си++

#include <iostream>

using namespace std;

int main()

{

    int x, a, b;

    cin >> x;

    a = 0; b = 1;

    while (x > 0) {

        a = a+1;

        b = b * (x%100);

        x = x/100;

    }

    cout << a << endl << b endl;

}

 

 

23. Задание 23 № 18828

Исполнитель Вычислитель преобразует число на экране.

У исполнителя есть три команды, которым присвоены номера:

1. Прибавить 1

2. Прибавить 3

3. Умножить на 3

Первая команда увеличивает число на экране на 1, вторая увеличивает его на 3, третья умножает его на 3.

Программа для исполнителя Вычислитель — это последовательность команд.

Сколько существует программ, которые преобразуют исходное число 4 в число 23 и при этом траектория вычислений содержит числа 10 и 17?

Траектория вычислений программы — это последовательность результатов выполнения всех команд программы. Например, для программы 132 при исходном числе 7 траектория будет состоять из чисел 8, 24, 27.

24. Задание 24 № 27694

Текстовый файл состоит не более чем из 106 символов AB и C. Определите максимальную длину цепочки вида ABABAB... (составленной из фрагментов AB, последний фрагмент может быть неполным).

Для выполнения этого задания следует написать программу. Ниже приведён файл, который необходимо обработать с помощью данного алгоритма.

 

Задание 24

 

25. Задание 25 № 27857

Напишите программу, которая ищет среди целых чисел, принадлежащих числовому отрезку [84052; 84130], число, имеющее максимальное количество различных натуральных делителей, если таких чисел несколько — найдите минимальное из них. Выведите на экран количество делителей такого числа и само число.

Например, в диапазоне [2; 48] максимальное количество различных натуральных делителей имеет число 48, поэтому для этого диапазона вывод на экране должна содержать следующие значения:

10 48

 

Ответ:

 

 

 

26. Задание 26 № 27881

Системный администратор раз в неделю создаёт архив пользовательских файлов. Однако объём диска, куда он помещает архив, может быть меньше, чем суммарный объём архивируемых файлов. Известно, какой объём занимает файл каждого пользователя.

По заданной информации об объёме файлов пользователей и свободном объёме на архивном диске определите максимальное число пользователей, чьи файлы можно сохранить в архиве, а также максимальный размер имеющегося файла, который может быть сохранён в архиве, при условии, что сохранены файлы максимально возможного числа пользователей.

Входные данные.

 

Задание 26

 

В первой строке входного файла находятся два числа: S — размер свободного места на диске (натуральное число, не превышающее 10 000) и N — количество пользователей (натуральное число, не превышающее 5000). В следующих N строках находятся значения объёмов файлов каждого пользователя (все числа натуральные, не превышающие 100), каждое в отдельной строке.

Запишите в ответе два числа: сначала наибольшее число пользователей, чьи файлы могут быть помещены в архив, затем максимальный размер имеющегося файла, который может быть сохранён в архиве, при условии, что сохранены файлы максимально возможного числа пользователей.

Пример входного файла:

100 4

80

30

50

40

При таких исходных данных можно сохранить файлы максимум двух пользователей. Возможные объёмы этих двух файлов 30 и 40, 30 и 50 или 40 и 50. Наибольший объём файла из перечисленных пар — 50, поэтому ответ для приведённого примера:

2 50

 

Ответ:

 

27. Задание 27 № 28133

На вход программы поступает последовательность из N целых положительных чисел. Рассматриваются все пары различных элементов последовательности (элементы пары не обязаны стоять в последовательности рядом), такие что ai > aj при i < j ≤ N. Среди пар, удовлетворяющих этому условию, необходимо найти и вывести пару с максимальной суммой элементов, которая делится на 120. Если среди найденных пар максимальную сумму имеют несколько, то можно напечатать любую из них. Если пар заданным условием нет, то программа должна вывести 00.

 

Входные данные.

 

Файл A

Файл B

 

В первой строке входных данных задаётся количество чисел N (1 ≤ N ≤ 1000). В каждой из последующих N строк записано одно натуральное число, не превышающее 10000.

В качестве результата программа должна напечатать элементы искомой пары. Если таких пар несколько, можно вывести любую из них.

Пример организации исходных данных во входном файле:

7

1

119

2

118

3

237

123

Пример выходных данных для приведённого выше примера входных данных:

237 123

В ответе укажите четыре числа: сначала значение искомой суммы для файла А (два числа через пробел), затем для файла B (два числа через пробел).

 

Ответ: 

 

Пояснение. Из 7 чисел можно составить 14 пар. В данном случае условиям удовлетворяет пара: 237 и 123. Сумма 360 делится на 120, ai > aj, а i < j. У всех остальных пар как минимум одно из этих условий не выполняется.

Просмотр содержимого документа
«2022 ЕГЭ Май Информатика Вариант 7»

Задание 1 № 19052

На рисунке схема дорог Н-ского района изображена в виде графа, в таблице содержатся сведения о протяжённости каждой из этих дорог (в километрах).

 


П1

П2

П3

П4

П5

П6

П7

П1




9



7

П2




5


11


П3






12


П4

9

5



4

13

15

П5




4


10

8

П6


11

12

13

10



П7

7



15

8



 

Так как таблицу и схему рисовали независимо друг от друга, то нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Определите, какова протяжённость дороги из пункта Д в пункт Е. В ответе запишите целое число — так, как оно указано в таблице.

2. Задание 2 № 18483

Логическая функция F задаётся выражением ((y → w) ≡ (x → ¬z)) ∧ (x ∨ w).

Дан частично заполненный фрагмент, содержащий неповторяющиеся строки таблицы истинности функции F.

Определите, какому столбцу таблицы истинности соответствует каждая из переменных xyzw.

 

Переменная 1

Переменная 2

Переменная 3

Переменная 4

Функция

???

???

???

???

F

0

1

1

1

0

1

0

1

0

1


0

0


1

 

В ответе напишите буквы xyzw в том порядке, в котором идут соответствующие им столбцы (сначала буква, соответствующая первому столбцу; затем буква, соответствующая второму столбцу, и т. д.). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

Пример. Пусть задано выражение x → y, зависящее от двух переменных x и y, и фрагмент таблицы истинности:

 

Переменная 1

Переменная 1

Функция

???

???

F

0

1

0

 

Тогда первому столбцу соответствует переменная y, а второму столбцу соответствует переменная x. В ответе нужно написать: yx.

3. Задание 3 № 37492

В файле приведён фрагмент базы данных «Продукты» о поставках товаров в магазины районов города. База данных состоит из трёх таблиц.

3.xlsx

Таблица «Движение товаров» содержит записи о поставках товаров в магазины в течение первой декады июня 2021 г., а также информацию о проданных товарах. Поле Тип операции содержит значение Поступление или Продажа, а в соответствующее поле Количество упаковок, шт. занесена информация о том, сколько упаковок товара поступило в магазин или было продано в течение дня. Заголовок таблицы имеет следующий вид.

 

ID операции

Дата

ID магазина

Артикул

Тип операции

Количество упаковок,
шт.

Цена,
руб./шт.

 

Таблица «Товар» содержит информацию об основных характеристиках каждого товара. Заголовок таблицы имеет следующий вид.

 

Артикул

Отдел

Наименование

Ед. изм.

Количество
в упаковке

Поставщик

 

Таблица «Магазин» содержит информацию о местонахождении магазинов. Заголовок таблицы имеет следующий вид.

 

ID магазина

Район

Адрес

 

На рисунке приведена схема указанной базы данных.

Используя информацию из приведённой базы данных, определите, сколько рублей потребовалось магазинам Первомайского района для закупки яиц диетических за период с 1 по 10 июня включительно.

В ответе запишите только число.

4. Задание 4 № 18074

Для кодирования некоторой последовательности, состоящей из букв К, Л, М, Н, П, Р решили использовать неравномерный двоичный код, удовлетворяющий условию Фано. Для букв К, Л, М, Н использовали соответственно кодовые слова 00, 01, 100, 110. Укажите кратчайшее возможное кодовое слово для буквы П, при котором код будет допускать однозначное декодирование. Если таких кодов несколько, укажите код с наименьшим числовым значением.

 

Примечание. Условие Фано означает, что ни одно кодовое слово не является началом другого кодового слова.

5. Задание 5 № 18075

На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.

1) Строится двоичная запись числа N.

2) К этой записи дописываются справа ещё два разряда по следующему правилу:

    а) находится остаток от деления на 2 суммы двоичных разрядов N, полученный результат дописывается в конец двоичной последовательности N.

    б) пункт а повторяется для вновь полученной последовательности.

Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа N) является двоичной записью искомого числа R. Укажите минимальное число R, которое превышает 123 и может являться результатом работы алгоритма. В ответе это число запишите в десятичной системе.

6. Задание 6 № 8096

Запишите число, которое будет напечатано в результате выполнения программы. Для Вашего удобства программа представлена на пяти языках программирования.

Бейсик

Python

DIM S, N AS INTEGER

S = 301

N = 0

WHILE S 0

    S = S - 10

    N = N + 2

WEND

PRINT N

s = 301

n = 0

while s 0:

    s = s - 10

    n = n + 2

print(n)

Паскаль

Алгоритмический язык

var s, n: integer;

begin

    s := 301;

    n := 0;

    while s 0 do

    begin

        s := s - 10;

        n := n + 2;

    end;

    writeln(n)

end.

алг

нач

    цел n, s

    s := 301

    n := 0

    нц пока s 0

        s := s - 10

        n := n + 2

    кц

    вывод n

кон

Си++

#include

using namespace std;

int main()

{

    int s = 301, n = 0;

    while (s 0) {

        s = s - 10;

        n = n + 2;

    }

    cout

    return 0;

}

7. Задание 7 № 2440

Сколько секунд потребуется модему, передающему сообщения со скоростью 19200 бит/с, чтобы передать цветное растровое изображение размером  пикселей, при условии, что цвет каждого пикселя кодируется 24 битами?

8. Задание 8 № 9194

Сколько слов длины 6, начинающихся и заканчивающихся согласной буквой, можно составить из букв Г, О, Д? Каждая буква может входить в слово несколько раз. Слова не обязательно должны быть осмысленными словами русского языка.

9. Задание 9 № 27518

Откройте файл электронной таблицы, содержащей вещественные числа — результаты ежечасного измерения температуры воздуха на протяжении трёх месяцев.

Задание 9

Найдите разность между минимальным значением температуры и её средним арифметическим значением. Ответ округлите до целого числа.

10. Задание 10 № 27581

С помощью текстового редактора определите, сколько раз, не считая сносок, встречается слово «день» или «День» в тексте романа в стихах А. С. Пушкина «Евгений Онегин». Другие формы слова «день», такие как «полдень», «дни» и т. д., учитывать не следует. В ответе укажите только число.

Задание 10

11. Задание 11 № 5996

В велокроссе участвуют 359 спортсменов. Специальное устройство регистрирует прохождение каждым из участников промежуточного финиша, записывая его номер с использованием минимально возможного количества бит, одинакового для каждого спортсмена. Какой объём памяти будет использован устройством, когда промежуточный финиш прошли 168 велосипедистов? (Ответ дайте в байтах.)

12. Задание 12 № 15951

Исполнитель Редактор получает на вход строку цифр и преобразует её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр.

А) заменить (vw).

Эта команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Например, выполнение команды

заменить (111, 27)

преобразует строку 05111150 в строку 0527150.

Если в строке нет вхождений цепочки v, то выполнение команды заменить (vw) не меняет эту строку.

Б) нашлось (v).

Эта команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Строка исполнителя при этом не изменяется.

 

Цикл

ПОКА условие

    последовательность команд

КОНЕЦ ПОКА

выполняется, пока условие истинно.

 

Какая строка получится в результате применения приведённой ниже программы к строке, состоящей из 98 единиц?

 

НАЧАЛО

    ПОКА нашлось (1111)

        заменить (1111, 22)

        заменить (222, 1)

    КОНЕЦ ПОКА

КОНЕЦ

13. Задание 13 № 29200

На рисунке — схема дорог, связывающих пункты А, Б, В, Г, Д, Е, Ж, И, К, Л, М, Н, П. По каждой дороге можно передвигаться только в направлении, указанном стрелкой. Укажите в ответе длину самого длинного пути из пункта А в пункт П. Длиной пути считается количество дорог, составляющих путь.

14. Задание 14 № 5363

Укажите наименьшее основание системы счисления, в которой запись десятичного числа 30 имеет ровно три значащих разряда.

15. Задание 15 № 17382

Для какого наименьшего целого неотрицательного числа A выражение

(5x + 3y ≠ 60) ∨ ((A  x) ∧ (A  y))

 

тождественно истинно при любых целых неотрицательных x и y?

16. Задание 16 № 6779

Алгоритм вычисления значений функций F(n) и G(n), где n — натуральное число, задан следующими соотношениями:

 

F(1) = 1; G(1) = 1;

F(n) = F(n – 1) – G(n – 1), G(n) = F(n–1) + G(n – 1), при n ≥ 2

 

Чему равно значение величины F(5)/G(5)? В ответе запишите только натуральное число.

17. Задание 17 № 39764

Файл содержит последовательность неотрицательных целых чисел, не превышающих 10 000. Назовём тройкой три идущих подряд элемента последовательности. Определите количество троек чисел таких, которые могут являться сторонами прямоугольного треугольника. В ответе запишите два числа: сначала количество найденных троек, а затем — максимальную сумму элементов таких троек. Если таких троек не найдётся — следует вывести 0 0.

Задание 17

Ответ:

 

18. Задание 18 № 27677

Квадрат разлинован на N×N клеток (1 N 

Задание 18

Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную.

Исходные данные представляют собой электронную таблицу размером N×N, каждая ячейка которой соответствует клетке квадрата.

Пример входных данных:

1

8

8

4

10

1

1

3

1

3

12

2

2

3

5

6

 

Для указанных входных данных ответом должна быть пара чисел 41 и 22.

19. Задание 19 № 33098

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч (по своему выбору) один камень или увеличить количество камней в куче в три раза. Например, пусть в одной куче 7 камней, а в другой 9 камней; такую позицию мы будем обозначать (7, 9). За один ход из позиции (7, 9) можно получить любую из четырёх позиций: (8, 9), (21, 9), (7, 10), (7, 27). Чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 45. Победителем считается игрок, сделавший последний ход, т. е. первым получивший позицию, в которой в кучах будет 45 или больше камней.

В начальный момент в первой куче было 4 камня, во второй куче — S камней; 1 ≤ S ≤ 40.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по этой стратегии игрока, не являющиеся для него безусловно выигрышными, т. е. не являющиеся выигрышными независимо от игры противника.

Известно, что Ваня выиграл своим первым ходом после неудачного первого хода Пети. Укажите минимальное значение S, когда такая ситуация возможна

20. Задание 20 № 33099

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч (по своему выбору) один камень или увеличить количество камней в куче в три раза. Например, пусть в одной куче 7 камней, а в другой 9 камней; такую позицию мы будем обозначать (7, 9). За один ход из позиции (7, 9) можно получить любую из четырёх позиций: (8, 9), (21, 9), (7, 10), (7, 27). Чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 45. Победителем считается игрок, сделавший последний ход, т. е. первым получивший позицию, в которой в кучах будет 45 или больше камней.

В начальный момент в первой куче было 4 камня, во второй куче — S камней; 1 ≤ S ≤ 40.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по этой стратегии игрока, не являющиеся для него безусловно выигрышными, т. е. не являющиеся выигрышными независимо от игры противника.

Найдите два таких значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

— Петя не может выиграть за один ход;

— Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Найденные значения запишите в ответе в порядке возрастания без разделительных знаков.

21. Задание 21 № 33100

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч (по своему выбору) один камень или увеличить количество камней в куче в три раза. Например, пусть в одной куче 7 камней, а в другой 9 камней; такую позицию мы будем обозначать (7, 9). За один ход из позиции (7, 9) можно получить любую из четырёх позиций: (8, 9), (21, 9), (7, 10), (7, 27). Чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 45. Победителем считается игрок, сделавший последний ход, т. е. первым получивший позицию, в которой в кучах будет 45 или больше камней.

В начальный момент в первой куче было 4 камня, во второй куче — S камней; 1 ≤ S ≤ 40.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по этой стратегии игрока, не являющиеся для него безусловно выигрышными, т. е. не являющиеся выигрышными независимо от игры противника.

Найдите минимальное значение S, при котором одновременно выполняются два условия:

— у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

— у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

22. Задание 22 № 7931

Ниже на пяти языках записан алгоритм. Получив на вход число x, этот алгоритм печатает два числа a и b. Укажите наименьшее из таких чисел x, при вводе которого алгоритм печатает сначала 2, а потом 7.

Бейсик

Python

DIM X, A, B AS INTEGER

INPUT X

A = 0: B = 1

WHILE X 0

    A = A+1

    B = B * (X MOD 100)

    X = X\100

WEND

PRINT A

PRINT B

x = int(input())

a, b = 0, 1

while x 0:

    a = a + 1

    b = b * (x%100)

    x = x//100

print(a)

print(b)

Паскаль

Алгоритмический язык

var x, a, b: integer;

begin

    readln(x);

    a := 0; b := 1;

    while x 0 do

        begin

            a := a+1;

            b := b*(x mod 100);

            x := x div 100;

        end;

    writeln(a); write(b);

end.

алг

нач

цел x, a, b

ввод x

a:=0; b:=1

нц пока x 0

    a := a+1

    b := b*mod(x,100)

    x := div(x,100)

кц

вывод a, нс, b

кон

Си++

#include

using namespace std;

int main()

{

    int x, a, b;

    cin x;

    a = 0; b = 1;

    while (x 0) {

        a = a+1;

        b = b * (x%100);

        x = x/100;

    }

    cout

}

23. Задание 23 № 18828

Исполнитель Вычислитель преобразует число на экране.

У исполнителя есть три команды, которым присвоены номера:

1. Прибавить 1

2. Прибавить 3

3. Умножить на 3

Первая команда увеличивает число на экране на 1, вторая увеличивает его на 3, третья умножает его на 3.

Программа для исполнителя Вычислитель — это последовательность команд.

Сколько существует программ, которые преобразуют исходное число 4 в число 23 и при этом траектория вычислений содержит числа 10 и 17?

Траектория вычислений программы — это последовательность результатов выполнения всех команд программы. Например, для программы 132 при исходном числе 7 траектория будет состоять из чисел 8, 24, 27.

24. Задание 24 № 27694

Текстовый файл состоит не более чем из 106 символов AB и C. Определите максимальную длину цепочки вида ABABAB... (составленной из фрагментов AB, последний фрагмент может быть неполным).

Для выполнения этого задания следует написать программу. Ниже приведён файл, который необходимо обработать с помощью данного алгоритма.

Задание 24

25. Задание 25 № 27857

Напишите программу, которая ищет среди целых чисел, принадлежащих числовому отрезку [84052; 84130], число, имеющее максимальное количество различных натуральных делителей, если таких чисел несколько — найдите минимальное из них. Выведите на экран количество делителей такого числа и само число.

Например, в диапазоне [2; 48] максимальное количество различных натуральных делителей имеет число 48, поэтому для этого диапазона вывод на экране должна содержать следующие значения:

10 48

 

Ответ:

26. Задание 26 № 27881

Системный администратор раз в неделю создаёт архив пользовательских файлов. Однако объём диска, куда он помещает архив, может быть меньше, чем суммарный объём архивируемых файлов. Известно, какой объём занимает файл каждого пользователя.

По заданной информации об объёме файлов пользователей и свободном объёме на архивном диске определите максимальное число пользователей, чьи файлы можно сохранить в архиве, а также максимальный размер имеющегося файла, который может быть сохранён в архиве, при условии, что сохранены файлы максимально возможного числа пользователей.

Входные данные.

Задание 26

В первой строке входного файла находятся два числа: S — размер свободного места на диске (натуральное число, не превышающее 10 000) и N — количество пользователей (натуральное число, не превышающее 5000). В следующих N строках находятся значения объёмов файлов каждого пользователя (все числа натуральные, не превышающие 100), каждое в отдельной строке.

Запишите в ответе два числа: сначала наибольшее число пользователей, чьи файлы могут быть помещены в архив, затем максимальный размер имеющегося файла, который может быть сохранён в архиве, при условии, что сохранены файлы максимально возможного числа пользователей.

Пример входного файла:

100 4

80

30

50

40

При таких исходных данных можно сохранить файлы максимум двух пользователей. Возможные объёмы этих двух файлов 30 и 40, 30 и 50 или 40 и 50. Наибольший объём файла из перечисленных пар — 50, поэтому ответ для приведённого примера:

2 50

 

Ответ:

27. Задание 27 № 28133

На вход программы поступает последовательность из N целых положительных чисел. Рассматриваются все пары различных элементов последовательности (элементы пары не обязаны стоять в последовательности рядом), такие что ai  aj при ij ≤ N. Среди пар, удовлетворяющих этому условию, необходимо найти и вывести пару с максимальной суммой элементов, которая делится на 120. Если среди найденных пар максимальную сумму имеют несколько, то можно напечатать любую из них. Если пар заданным условием нет, то программа должна вывести 00.

 

Входные данные.

Файл A

Файл B

В первой строке входных данных задаётся количество чисел N (1 ≤ N ≤ 1000). В каждой из последующих N строк записано одно натуральное число, не превышающее 10000.

В качестве результата программа должна напечатать элементы искомой пары. Если таких пар несколько, можно вывести любую из них.

Пример организации исходных данных во входном файле:

7

1

119

2

118

3

237

123

Пример выходных данных для приведённого выше примера входных данных:

237 123

В ответе укажите четыре числа: сначала значение искомой суммы для файла А (два числа через пробел), затем для файла B (два числа через пробел).

 

Ответ: 

 

Пояснение. Из 7 чисел можно составить 14 пар. В данном случае условиям удовлетворяет пара: 237 и 123. Сумма 360 делится на 120, ai  aj, а ij. У всех остальных пар как минимум одно из этих условий не выполняется.