Знакомство ребенка с уравнениями начинается почти с самого начала изучения математики, задолго до ЕГЭ. Еще в младшей школе решаются простейшие алгебраические уравнения, которые служат фундаментом для построения алгоритмов решения уравнений в 11 классе. При этом почти к каждому разделу учебника математики прикрепляются уравнения определенного вида с различной комбинацией изученных действий, функций и разным уровнем сложности.
Прежде чем говорить о методических рекомендациях по решению уравнений, обратимся к алгоритму.
Алгоритм – понятное предписание, указывающее, какие операции и в какой последовательности необходимо выполнить с данными, чтобы решить любую задачу данного типа.
Всякий алгоритм описывает общий метод решения класса однотипных задач.
Для успешного решения уравнений необходимо отработать три основных этапа:
введение алгоритма;
усвоение алгоритма;
применение алгоритма.
Цели этапов:
цель первого этапа – актуализация знаний, необходимых для введения и обоснования алгоритма, а также формулирование алгоритма;
цель второго этапа – отработка операций, входящих в алгоритм, и усвоение их последовательности;
цель третьего этапа – отработка алгоритма в знакомых (при варьировании исходных данных) и незнакомых ситуациях.
Формы работы с учащимися:
на первом этапе - устная работа на повторение.
на втором этапе – письменная коллективная работа с широким использованием комментирования выполняемых действий и групповая работа.
на третьем этапе – самостоятельная работа.
Общий приём решения уравнений:
«Универсальный» алгоритм решения линейных уравнений с одним неизвестным вида: 5х + 3 = 2х + 9
1) раскрыть скобки (если таковые имеются);
2) оставить неизвестные в одной части уравнения, известные – в другой, применяя правило: слагаемое можно перенести из одной части уравнения в другую, изменив при этом его знак;
5х – 2х = 9 – 3
3) привести подобные слагаемые;
3х = 6
4) разделить обе части уравнения на коэффициент при неизвестном;
x = 2
5) записать ответ.
Ответ: 2.
Первый этап формирования алгоритма
Устные упражнения на повторение:
1) Перенесите из левой части уравнения в правую то слагаемое, которое не содержит неизвестного:
а) 8х + 5,9 = 7х + 20;
б) 6х – 8 = -5х – 1,6.
2) Оставьте в левой части уравнения все слагаемые, содержащие неизвестное, а в правой – не содержащие неизвестное:
а) 15y – 8 = -6y +4,6;
б) -16z + 1,7 = 2z – 1.
3) Приведите подобные слагаемые:
а) 15t + 8 – 8t – 6;
б) 13a + 4 – 7a - 25a;
в) 24m + 7 – 9m – 14m.
4) Раскройте скобки и приведите подобные слагаемые:
а) 7b – (3b + 1);
б) 3(x - 5) + 10x;
в) -2(x + 1) + x.
Второй этап формирования алгоритма
Решите уравнения:
1) -2x + 16 = 5x – 19
2) 4(3 – 2x) + 24 = 2(3 + 2x)
3) 15 – 3(x - 8) = 3
4) 0,5(4 + x) – 0,4(x - 3) = 2,5
5) 0,4(x - 9) – 0,3(x + 2) = 0,7
Третий этап формирования алгоритма
Решите уравнения:
18 = 3y + 3
6x + 10 = 5x + 15
-5n – 16 = 3n
8 – 5n = 10 – 4n
9m – 8 = 6m + 7
Тестовые задания
1. Решите уравнение: 4,2х + 5 = -7,6
А) 4;
Б) -3;
В) -0,3;
Г) другой ответ.
2. Найдите сумму корней уравнений
х + 11,7 = 8,7 и (3х + 4,6) – 6,6 = 8,7 + 2,2
А) 4,3;
Б) -7,4;
В) 1,3;
Г) другой ответ.
3. Отец в два раза старше сына и на 25 лет старше дочери. Сколько лет дочери, если всем вместе им 95 лет?
А) 23;
Б) 24;
В) 48;
Г) другой ответ.
Самостоятельная работа
1. Решите уравнения:
а) 2,1х – 3,5 = 1,4х;
б) 2(4 – 1,9х) = 0,8 – 0,2х.
Ясно, что рассчитывать на изображение методики обучения решению уравнений, пригодной для всех детей и во всех случаях – все равно, что искать универсальное лекарство от всех болезней. Практическая ценность обучения школьников решению уравнений разнообразными способами в современных условиях заключается совсем не в том, чтобы раз и навсегда вооружить их приемами решения различных уравнений, которые будут возникать в дальнейшем обучении, а в том, что оно обогатит их опыт мыслительной деятельности. А помогут в этом алгоритмы решения уравнений.