Обобщение педагогического опыта учителя физики МОУ СОШ № 5
Бостановой Фатимы Назировны
«Использование системно-деятельностного подхода для повышения качества знаний на уроках физики»
с.Александровское, 2017
«Единственный путь, ведущий к знанию – это деятельность».
Б.Шоу
Преподавание физики, в силу особенности самого предмета, представляет собой благоприятную среду для применения системно-деятельностного подхода, так как курс физики средней школы включает в себя разделы изучение и понимание которых требует развитого образного мышления, умения анализировать и сравнивать. На современном этапе развития образования учителю постоянно нужно мотивировать обучающихся на изучение предмета.
Можно выделить два пути реализации системно-деятельностного подхода:
проведение целых, законченных творческих уроков, основным образом
сконструированных, в которых учащиеся сами добывают знания, учатся осознавать их, осмысливать, отрабатывать;
введение в традиционные уроки фрагментов, посвященных творческой познавательной деятельности учащихся, то есть, возможно, более полное «включение» ребят в выполнение разнообразных развивающих творческих заданий.
Дидактические принципы системно-деятельностного подхода:
1)Принцип деятельности — заключается в том, что ученик, получая знания не в готовом виде, а, добывая их сам, осознает при этом содержание и формы своей учебной деятельности, понимает и принимает систему ее норм, активно участвует в их совершенствовании, что способствует активному успешному формированию его общекультурных и деятельностных способностей, общеучебных умений.
2) Принцип непрерывности – означает преемственность между всеми ступенями и этапами обучения на уровне технологии, содержания и методик с учетом возрастных психологических особенностей развития детей.
3) Принцип целостности – предполагает формирование учащимися обобщенного системного представления о мире (природе, обществе, самом себе, социокультурном мире и мире деятельности, о роли и месте каждой науки в системе наук).
4) Принцип минимакса – заключается в следующем: школа должна предложить ученику возможность освоения содержания образования на максимальном для него уровне (определяемом зоной ближайшего развития возрастной группы) и обеспечить при этом его усвоение на уровне социально безопасного минимума (государственного стандарта знаний).
5) Принцип психологической комфортности – предполагает снятие всех стрессообразующих факторов учебного процесса, создание в школе и на уроках доброжелательной атмосферы, ориентированной на реализацию идей педагогики сотрудничества, развитие диалоговых форм общения.
6) Принцип вариативности – предполагает формирование обучающимися способностей к систематическому перебору вариантов и адекватному принятию решений в ситуациях выбора.
7) Принцип творчества – означает максимальную ориентацию на творческое начало в образовательном процессе, приобретение обучающимися собственного опыта творческой деятельности.
Важным и ответственным для системно-деятельностного подхода является проблемное обучение, создание проблемной ситуации. При проблемном обучении ребёнок усваивает материал, не просто слушая или воспринимая органами чувств, а как результат удовлетворения возникшей у него потребности в знаниях, являясь активным субъектом своего образования. Проблемный вопрос должен содержать противоречивость информации и вызывать необходимость и желание сравнивать, рассуждать, анализировать данные, обобщать их, т. е. искать закономерность. Так, например: “Почему тонет брошенный в воду гвоздь, а тяжелое судно плавает?” будет проблемным, а вопрос: “Почему тела плавают?” будет информационным, поскольку он требует для ответа лишь знаний.
На своих уроках я часто сочетаю фронтальную и индивидуальную работу с групповой (лабораторные работы, решение практических задач, соревнования). Наиболее эффективными методами работы являются путешествие, соревнование. Например, урок - путешествие «Скорость тела», «Плотность вещества»; урок – конференция «Реактивное движение. Ракеты»(Физика 9 класс) и др.Здесь обучающиеся систематизируют свои знания и самостоятельно занимаются обучением. Они ищут нужную информацию, готовят электронные презентации, работают с документацией, учебником, таблицами, развивают способность думать.
При выполнении практических и лабораторных работ обучающиеся связывают рассмотренные на уроках модели с реальной жизнью. Так, при решении задач в 7 классе обучающиеся не только комплексно применяют знания и умения, но и учатся анализировать задачу. Например: «В аквариуме длиной 30см и шириной 20см налита вода до высоты 25см. Определите массу воды в аквариуме.» Ученикам предлагаю вопросы: Какие величины нам необходимы для определения массы воды? Что следует знать, чтобы решить задачу? Какие величины запишем в условии задачи? Как можно определить плотность воды? Чему она равна? (работа с таблицей) Все ли величины даны в системе СИ? Задаю домашние практические задачи: рассчитать массу воды в трехлитровой банке; рассчитать плотность своего тела или плотность воздуха в своей комнате, плотность мёда, рассчитать скорость своего движения по дороге домой и т.д.
На уроках обучающиеся решают практическим путем задачи на выяснение зависимости между величинами (например: зависимость силы тяжести от массы; от каких величин зависит сила трения или сила упругости и т. д.). Обучающиеся дома проводят опыты: на проявление диффузии (например: опыты с марганцовкой и жидкостями), плотность жидкости (напр. плавание тела в соленой воде), на кипение и конденсация и т. д.
Использование проблемных ситуаций на уроках физики:
а) при объяснении нового материала.
Рассмотрим пример создания проблемной ситуации на уроке физики по теме “Диффузия” в 7 классе.
Учащимся предлагается определить скорость диффузии запаха в помещении и сравнить ее со скоростью движения молекул, которая сообщается ученикам. Скорость молекул примерно 400 м / с, она соизмерима со скоростью пули.
После расчета скорости диффузии учащиеся получают результат: примерно 25 см /с. Для расчета им необходимо вспомнить, как рассчитать скорость, зная путь и время. Возникает проблема: почему скорость диффузии много меньше скорости молекулы? Учащиеся выдвигают свои гипотезы и пытаются объяснить данный факт, используя первоначальные сведения о строении вещества.
б) при использовании физического эксперимента.
Рассмотрим пример создания проблемной ситуации на уроке физики “Плавание тел” в 7 классе. Перед учащимися находится три сосуда с жидкостью, в которых помещены три одинаковых тела, например, яйца: в первом сосуде тело плавает на поверхности, во втором находится внутри жидкости, в третьем тело на дне.
Вопрос: Почему одно тело ведет себя по-разному? От каких факторов зависит поведение тела в жидкости?
Учащиеся предлагают много версий, но не все они отражают суть, поэтому сами учащиеся выбирают из всех самые доказательные. Так как, во всех случаях тела одинаковые, то можно сразу исключить параметры тела, остается жидкость, следовательно, условия плавания связаны с жидкостью, плотностью жидкости.
Таким образом, зная о существовании силы тяжести и силы Архимеда, учащиеся приходят к выводу о соотношении этих сил, а так же связывают это с плотностью тел и жидкости. На доске делаем чертеж данного опыта и подбираем соотношение сил, после каждого рисунка делаем вывод: тело тонет, если…и т.д.
в) при проведении фронтальной лабораторной работы
Проблемные вопросы исследовательского характера можно поставить на уроке физики по теме “Сила трения” в 7 классе.
Перед учащимися ставится вопрос: От каких факторов зависит сила трения? Для того, чтобы решить эту проблему, учащимся необходимо самостоятельно предложить ход работы и выбрать необходимое оборудование. Учащиеся уже знакомы с измерением силы трения с помощью динамометра, поэтому они предлагают параметры, от которых зависит сила трения:
1)масса тела (т.е. брусок необходимо нагружать)
2)поверхность, по которой движется брусок (это может быть дерево, обложка тетради, поверхность книги, пол-линолиум, линейка и т. д.)
После проведения данного эксперимента учащиеся делают вывод: “ сила трения зависит от…”
г) при использовании мысленного эксперимента.
На уроке по теме: “ Сопротивление проводника” учащиеся должны четко представлять, от каких параметров зависит сопротивление.
Ученики предлагают различные параметры и логику своих рассуждений:
1)от длины проводника; 2)толщины; 3) материала проводника;
Учащиеся должны хорошо понимать, что для того чтобы найти зависимость от какого либо параметра, необходимо остальные параметры уровнять.
Чем больше длина, тем большее сопротивление приходиться преодолевать электронам при прохождении по проводнику, следовательно, R1R2 и т.д
Урок решения цепочки экспериментальных задач.
Весь новый материал разбивается на ряд фрагментов. Перед каждым ставится вопрос, а учащиеся в качестве ответа на него выдвигают свои гипотезы, а затем экспериментально проверяют их; вывод формулируется в процессе обсуждения, беседы. После получения ответа на первый вопрос задается новый; процесс повторяется. Изучение идет по схеме:
Вопрос 1 → ответ-гипотеза → эксперимент для проверки гипотезы → вывод 1;
Вопрос 2 → ответ-гипотеза → эксперимент для проверки гипотезы → вывод 2 и т.д..
Завершается процесс и урок общим выводом.
Урок данного типа я использовала при изучении темы «Равнодействующая сил» в 7 классе. Перед учащимися ставится проблема: как ведет тело, если на него действуют несколько сил. У ребят возникает вопрос: а как направлены силы? От направления сил, действующих на тело, зависит результат. Учащиеся выдвигают гипотезы: если силы направлены в одну сторону, то равнодействующая равна сумме сил, если в противоположные, по их разности, если силы направлены под углом друг к другу – равнодействующая не может быть равна нулю. Проверяют гипотезы, делают выводы Разрабатывая сценарий эксперимента, проводя его, учащиеся учатся работать в парах, развивается самостоятельность, творческие способности. Процесс освоения материала построен по циклу научного познания, в деятельности учащихся присутствуют теоретическая и практическая компоненты.
Урок – митинг.
Схема урока: объявляется тема, класс разбивается на группы, которым подготавливают речь, в которой высказывают свое мнение по проблеме урока, обязательно подкрепляя его аргументами. Тема урока должна быть связана с общественной жизнью, имеющей значение для региона, страны. Например, в 11 классе при изучении темы «Передача и распределение энергии» как использовать силу ветра.
Урок – диспут.
Заранее объявляется тема урока, например в 7 классе «Трение: друг или враг?». Класс делится на две группы: пессимистов, которые высказывают отрицательные, негативные идеи по предложенной теме, и оптимистов, которые ищут положительные доводы. В ходе подготовки к уроку задействованы умения отыскивать источники информации и выбирать из них требуемые факты.
Насыщение уроков физики развивающими и творческими заданиями и задачами
Развивающих заданий может быть много. Главная идея для их подбора следующая: задания должны приглашать к размышлению, наблюдениям, поиску, выдвижению идей, высказыванию своей точки зрения, к творчеству в его разных видах, к полету фантазии. В них непременно должны присутствовать вопросы: «Ваше мнение?», «Как вы думаете?», «Каким будет Ваше предложение?», «Что предпринять?», «Как объяснить?», «Если произойдет, как поступить?», «Какую идею вы выдвинете?», «Согласны вы с тем, что…?», «Как улучшить?» и так далее.
Для того чтобы уроки физики не стали в ряд традиционных, полноценно выполняли свою развивающую функцию и активно помогали реализовывать системно-деятельностный подход к обучению, нужно просить учеников составить план их решения и после завершения проводить рефлексию. Это означает, что ученик должен ответить минимум на следующие вопросы: Как я это делал? В какой последовательности?
Какие знания я применил? Почему именно их? Как было удачно? Почему?
В чем были затруднения? Как их удалось преодолеть? Как можно улучшить работу? Чем ее можно дополнить? Эти меры помогут ученику в процессе работы учиться действовать осмысленно и совершать свою деятельность.
Урок решения задач с неопределенностью при постановке вопроса, с неполным условием.
Чтобы готовить школьников к разрешению таких ситуаций можно предлагать им задачи следующего типа.
Что произойдет, если пулька, выпущенная из духового ружья, попадет в куриное яйцо. Ответ на вопрос зависит от того, вареное яйцо или сырое. Учащиеся конкретизируют ситуацию и отвечают на каждый вариант вопроса. На тело действуют две силы 5Н и 7Н. Чему будет равна равнодействующая? Опять же решение задачи зависит от того, куда направлены силы?
Задачи с частично неверными сведениями в условии и на поиск ошибок в решении. Задачи этого типа учат ставить вопрос о достоверности данных. В жизни таких ситуаций встречается немало, и школьники должны быть подготовлены к встрече с ними.
Задачи с «черным ящиком». Такие задачи развивают мышление, вооружают методом познания, поскольку, исследуя «черный ящик», учащиеся проходят все звенья научного поиска: накопление фактов, их анализ, выдвижение гипотезы, формулирование следствий из нее, проверочный эксперимент, формулировка вывода. Этот вид задач уместно применять в 8, 11 классах при закреплении темы «Соединение проводников».
В черном ящике имеется три резистора с сопротивлением: 5 Ом, 5 Ом, 1 Ом. Как соединены эти резисторы?
К уроку можно составлять свою таблицу заданий с учётом индивидуальных особенностей обучающихся. Например, задания с учетом индивидуальных особенностей обучающихся на уроке физики в 8 классе, «Закон Ома для участка цепи».
Уровень | Цель | Задание | Задание |
I | Повысить осознанность учебной работы учащихся | Определить цели и задачи деятельности на уроке, исходя из его темы. | Сравнить основные характеристики электрической цепи в зависимости от вида соединения проводников |
II | Способствовать прочному запоминанию через универсальные действия | Решить экспериментальную задачу по предложенной схеме соединения проводников | Сравнить результаты экспериментальной задачи по определению силы тока в цепи последовательного и параллельного соединения проводников. |
III | Формировать качество устной речи и содержательность ответа | Объяснить результаты экспериментальной задачи на основании законов соединения проводников и з. Ома | Смоделировать возможные схемы соединений с заданным количеством проводников |
I ряд. Перед вами карточка с рисунками: два из них относятся к роду электрических явлений, а один из них третий лишний. Вы должны выбрать, какой из них третий лишний. Почему? Но в одном из оставшемся рисунке есть ошибки, исправьте их

II ряд. Из кубиков соберите формулы физических величин, характеризующих любую физическую цепь и дайте им определение.(Сила тока, сопротивление, напряжение).
III ряд. Перед вами физическое лото. На маленьких карточках написаны определения. Если они соответствуют рисунку, изображенному на большой карточке, то вы их на неё накладываете.

Практические задания
Перед вами лампочки от карманного фонарика. Вы по данным, указанным на цоколе, определите сопротивление нити накала.
Соберите электрическую цепь по схеме и рассчитайте сопротивление резистора. (Один ученик собирает цепь по схеме у доски).
Постройте график зависимости силы тока от напряжения для проводника, сопротивление которого 2 Ом. (Все остальные выполняют это задание в тетрадях).
РЕЗУЛЬТАТЫ НА ДАННОМ ЭТАПЕ РАБОТЫ
Физика – это один из немногих школьных предметов, в ходе усвоения которого ученики вовлекаются во все этапы научного познания – от наблюдения явлений и их эмпирического исследования до выдвижения гипотез, выявления на их основе следствий и экспериментальной верификации выводов. Не прожитое деятельностно знание мертво и бесполезно. Важнейшим побудителем любой деятельности является интерес. Для того чтобы он возник, ничего нельзя давать детям в «готовом виде»: все (или почти все) знания и умения учащиеся должны добывать в процессе их личного труда – индивидуального или в малых группах.
Результаты свидетельствуют и о том, что эффективность развития творческой активности и повышения качества обучения зависит не только от мотивации извне (со стороны учителя), но и от внутренней мотивации (со стороны учащихся). Устойчивые положительные результаты будут получены в том случае, когда учитель совершенствует инновационные приемы, обеспечивающие высокий уровень усвоения учебного материала.
Результатом работы являются неоднократное участие учащихся в работе научно-практических конференций различных уровней, в соревнованиях УПБ, где достижения учащихся отмечались призовыми местами (Цагикян Артем, Скворцова Ксения, Курбанов Рамазан, Сергиенко Кирилл).