Примеры решений задач по комбинаторике
Большинство комбинаторных задач решается с помощью двух основных правил – правила суммы и правила произведения.
Выбор правила | Выбор правила |
Правило суммы | Правило произведения |
Если некоторый объект А можно выбрать m способами, а другой объект В можно выбрать n способами, то выбор объекта либо А, либо В можно осуществить m + n способами. | Если объект А можно выбрать m способами и если после каждого такого выбора объект В можно выбрать n способами, то выбор пары А и В можно осуществить m · n способами. |
Задача 1. В магазине «Все для чая» есть 6 разных чашек и 4 разных блюдца. Сколько вариантов чашки и блюдца можно купить?
Решение.
Чашку мы можем выбрать 6-ю способами, а блюдце 4-я способами. Так как нам надо купить пару чашку и блюдце, то это можно сделать 6 · 4 = 24 способами (по правилу произведения).
Ответ: 24.
Задача 2. При встрече каждый из друзей пожал другому руку. Сколько всего было рукопожатий, если встретились 6 друзей?
O формуле для числа сочетаний.
Как известно, деление может быть обозначено разными символами: __, /, :
Косую черту и двоеточие удобно использовать для записи формулы в одну строку, что здесь и сделано для экономии места в таблице. Горизонтальную черту используют для записи дроби. Если формулу для числа сочетаний записать дробью, то хорошо видно, как она сокращается.
Решение:
В одном рукопожатии равноправно участвуют два человека. 6 друзей объединялись в группы по 2 без учёта порядка следования. Такие группировки (выборки) называются сочетаниями. Число сочетаний определяем по формуле
С62 = 6!/2!/(6 - 2)! = 6!/2!/4! = 5·6/2 = 15.
Ответ: 15.
Для успешного решения комбинаторных задач надо еще и правильно выбрать формулу, по которой искать количество нужных соединений. В этом поможет следующая схема:

Рассмотрим решение нескольких задач на разные виды соединений без повторений.
Задача 3. Найдите количество трехзначных чисел, которые можно составить из цифр 1, 2, 3, 4, 5, 6, 7, если цифры в числе повторяться не могут.
Решение.
Для выбора формулы выясняем, что для чисел, которые мы будем составлять, порядок учитывается и не все элементы одновременно выбираются. Значит, это соединение – размещение из 7 элементов по 3. Воспользуемся формулой для числа размещений: A73 = 7(7 – 1)(7 – 2) = 7 · 6 · 5 = 210 чисел.
Ответ: 210.
Задача 4. Сколько существует семизначных телефонных номеров, в которых все цифры разные, а номер не может начинаться с нуля?
Решение.
На первый взгляд эта задача такая же, как и предыдущая, но сложность в том, что надо не учитывать те соединения, которые начинаются с нуля. Значит необходимо из существующих 10-ти цифр составить все семизначные номера телефонов, а потом от полученного числа отнять количество номеров, начинающихся с нуля. Формула будет иметь вид:
A107 – A96 = 10 · 9 · 8 · 7 · 6 · 5 · 4 – 9 · 8 · 7 · 6 · 5 · 4 = 544 320.
Ответ: 544 320.
Задача 5. Сколькими способами можно расставить на полке 12 книг, из которых 5 книг – это сборники стихотворений, так, чтобы сборники стояли рядом?
Решение.
Сначала примем 5 сборников условно за одну книгу, потому что они должны стоять рядом. Так как в соединении существенным есть порядок, и все элементы используются, значит это перестановки из 8 элементов (7 книг + условная 1 книга). Их количество Р8. Далее будем переставлять между собой только сборники стихотворений. Это можно сделать Р5 способами. Поскольку нам нужно расставить и сборники, и другие книги, то воспользуемся правилом произведения. Следовательно, Р8 · Р5 = 8! · 5!. Число способов будет большим, поэтому ответ можно оставить в виде произведения факториалов.
Ответ: 8! · 5!
Задача 6. В классе 16 мальчиков и 12 девочек. Для уборки территории возле школы нужно 4 мальчика и 3 девочки. Сколькими способами можно их выбрать со всех учеников класса?
Решение.
Сначала отдельно выберем 4 мальчика из 16 и 3 девочки из 12. Так как порядок размещения не учитывается, то соответственные соединения – сочетания без повторений. Учитывая необходимость одновременного выбора и мальчиков, и девочек, используем правило произведения. В результате число способов будет вычисляться таким образом:
С164 · С123 = (16!/(4! · 12!)) · (12!/(3! · 9!)) = ((13 · 14 · 15 · 16) / (2 · 3 · 4)) ·((10 · 11 · 12) / (2 · 3)) = 400 400.
Ответ: 400 400.
Задача 7. Сколькими способами 10 футбольных команд могут разыграть между собой золотые, бронзовые и серебряные медали?
Решение.
На пьедестале почёта находятся 3 команды из 10, и для них очень существенно, кто какое место занял, т.е. порядок следования. Составление групп с учетом порядка следования - размещения. Число размещений определяем по формуле
А103 = 10!/(10 - 3)! = 10!/7! = 8·9·10 = 720.
Другой способ решения с использованием И-правила, как в задаче 2б. Однако, чем больше выборка, тем удобнее сразу применять готовую формулу.
Ответ: 720.
Таким образом, успешное решение комбинаторной задачи зависит от правильного анализа ее условия, определения типа соединений, которые будут составляться, и выбора подходящей формулы для вычисления их количества.