СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Рабочая программа по математике 11 класс (профиль)

Категория: Математика

Нажмите, чтобы узнать подробности

Рабочая программа по математике 11 класс (профиль) к УМК "Алгебра и начала математического анализа"11 класс А. Г.Мордкович, "Геометрия" Л.С.Атанасян и другие.

Просмотр содержимого документа
«Рабочая программа по математике 11 класс (профиль)»




Муниципальное бюджетное общеобразовательное учреждение

муниципального образования город Нягань

«Общеобразовательная средняя школа №3»




Рассмотрено:

заседание МО

протокол № ____

от ____ _______ 2016г.



Согласовано:

заместитель директора по УВР

___________/Е.В. Кремер/

от ___ ______ 2016 г.

Утверждаю:

директор МБОУ ОСШ №3

___________ Н.Г.Лоленко

приказ № _____

от ____ ______ 20___





РАБОЧАЯ ПРОГРАММА

учителя

Зызда Любови Петровны

по математике

11 б класс

















2017 – 2018 учебный год



Аннотация к рабочей программе по математике для 11б класса



Нормативно-методические материалы

Федеральный  компонент  государственного образовательного стандарта  среднего (полного) общего образования,2004г.; 

Примерные программы среднего (полного) образования  по всем предметам;

Федеральный  перечень учебников, рекомендованных  Министерством образования РФ к использованию в образовательном процессе в образовательных  учреждениях на 2016/2017 уч. год;

Базисный  учебный план  общеобразовательных учреждений Российской Федерации,2004г.; 

Основная образовательная программа среднего общего образования

МБОУ ОСШ №3

Авторская программа

Мордкович А. Г., Атанасян Л.С.

Реализуемый УМК

  1. А.Г. Мордкович., Семенов П.В. Алгебра и начала математического анализа. 11 класс. В 2 ч. Ч.1. Учебник для учащихся общеобразовательных учреждений (базовый и углубленный уровни), - М. «Мнемозина», 2015.

  2. А.Г. Мордкович и др. Алгебра и начала математического анализа. 11 класс. В 2 ч. Ч.2. Задачник для учащихся общеобразовательных учреждений. - М. «Мнемозина», 2015.

  3. Геометрия, 10-11: Учебник для общеобразовательных учреждений: базовый и профильный уровни /Л.С.Атанасян, В.Ф.Бутузов, С.Б.Кадомцев и др. – М.: Просвещение, 2011.

Место учебного предмета в учебном плане

6 часов в неделю, всего 210 ч. в год


Цели и задачи

изучения

предмета


Цели:

  • формирование представлений об идеях и методах математики; о математике как универсальном языке науки, средстве моделирования явлений и процессов;

  • овладение устным и письменным математическим языком, математическими знаниями и умениями, необходимыми для изучения школьных естественно - научных дисциплин, для продолжения образования и освоения избранной специальности на современном уровне;

  • развитие логического мышления, алгоритмической культуры, пространственного воображения, развитие математического мышления и интуиции, творческих способностей на уровне, необходимом для продолжения образования и для самостоятельной деятельности в области математики и ее приложений в будущей профессиональной деятельности;

  • воспитание средствами математики культуры личности: знакомство с историей развития математики, эволюцией математических идей, понимание значимости математики для общественного прогресса.

Задачи:

  • систематизация сведений о числах; изучение новых видов числовых выражений и формул; совершенствование практических навыков и вычислительной культуры, расширение и совершенствование алгебраического аппарата, сформированного в основной школе и его применение к решению математических и нематематических задач;

  • расширение и систематизация общих сведений о функциях, пополнение класса изучаемых функций, иллюстрация широты применения функций для описания и изучения реальных зависимостей;

  • изучение свойств пространственных тел, формирование умения применять полученные знания для решения практических задач;

  • развитие представлений о вероятностно-статистических закономерностях в окружающем мире, совершенствование интеллектуальных и речевых умений путем обогащения математического языка, развития логического мышления;

  • знакомство с основными идеями и методами математического анализа.




Планируемые результаты освоения учебного предмета.

В результате изучения математики на профильном уровне в старшей школе ученик должен

Знать/понимать

  • значение математической науки для решения задач, возникающих в теории и практике; широту и ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;

  • значение практики и вопросов, возникающих в самой математике, для формирования и развития математической науки;

  • идеи расширения числовых множеств как способа построения нового математического аппарата для решения практических задач и внутренних задач математики;

  • значение идей, методов и результатов алгебры и математического анализа для построения моделей реальных процессов и ситуаций;

  • универсальный характер законов логики математических рассуждений, их применимость в различных областях человеческой деятельности;

  • различие требований, предъявляемых к доказательствам в математике, естественных, социально-экономических и гуманитарных науках, на практике;

  • роль аксиоматики в математике; возможность построения математических теорий на аксиоматической основе; значение аксиоматики для других областей знания и для практики;

  • вероятностных характер различных процессов и закономерностей окружающего мира.

Числовые и буквенные выражения

Уметь:

  • выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значения корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;

  • применять понятия, связанные с делимостью целых чисел, при решении математических задач;

  • находить корни многочленов с одной переменной, раскладывать многочлены на множители;

  • выполнять действия с комплексными числами, пользоваться геометрической интерпретацией комплексных чисел, в простейших случаях находить комплексные корни уравнений с действительными коэффициентами;

  • проводить преобразования числовых и буквенных выражений, включающих степени, радикалы, логарифмы и тригонометрические функции.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для

  • практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, при необходимости используя справочные материалы и простейшие вычислительные устройства.

Функции и графики

Уметь

  • определять значение функции по значению аргумента при различных способах задания функции;

  • строить графики изученных функций, выполнять преобразования графиков;

  • описывать по графику и по формуле поведение и свойства функций;

  • решать уравнения, системы уравнений, неравенства, используя свойства функций и их графические представления;

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для

  • описания и исследования с помощью функций реальных зависимостей, представления их графически; интерпретации графиков реальных процессов.

Начала математического анализа

Уметь

  • находить сумму бесконечно убывающей геометрический прогрессии;

  • вычислять производные и первообразные элементарных функций, применяя правила вычисления производных и первообразных, используя справочные материалы;

  • исследовать функции и строить их графики с помощью производной,;

  • решать задачи с применением уравнения касательной к графику функции;

  • решать задачи на нахождение наибольшего и наименьшего значения функции на отрезке;

  • вычислять площадь криволинейной трапеции и объемов фигур, полученных путем вращения плоской фигуры с помощью интегралла;



Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для

  • решения геометрических, физических, экономических и других прикладных задач, в том числе задач на наибольшие и наименьшие значения с применением аппарата математического анализа.

Уравнения и неравенства

Уметь

  • решать рациональные, показательные и логарифмические уравнения и неравенства, иррациональные и тригонометрические уравнения, их системы;

  • доказывать несложные неравенства;

  • решать текстовые задачи с помощью составления уравнений, и неравенств, интерпретируя результат с учетом ограничений условия задачи;

  • изображать на координатной плоскости множества решений уравнений и неравенств с двумя переменными и их систем.

  • находить приближенные решения уравнений и их систем, используя графический метод;

  • решать уравнения, неравенства и системы с применением графических представлений, свойств функций, производной;

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для

  • построения и исследования простейших математических моделей.


Элементы комбинаторики, статистики и теории вероятностей

Уметь:

  • решать простейшие комбинаторные задачи методом перебора, а также с использованием известных формул, треугольника Паскаля; вычислять коэффициенты бинома Ньютона по формуле и с использованием треугольника Паскаля;

  • вычислять, в простейших случаях, вероятности событий на основе подсчета числа исходов.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • анализа реальных числовых данных, представленных в виде диаграмм, графиков;

  • анализа информации статистического характера.


Геометрия

уметь

  • распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями, изображениями;

  • описывать взаимное расположение прямых и плоскостей в пространстве, аргументировать свои суждения об этом расположении;

  • анализировать в простейших случаях взаимное расположение объектов в пространстве;

  • изображать основные многогранники и круглые тела; выполнять чертежи по условиям задач;

  • строить простейшие сечения куба, призмы, пирамиды;

  • решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей, объемов);

  • использовать при решении стереометрических задач планиметрические факты и методы;

  • проводить доказательные рассуждения в ходе решения задач;

  • использовать приобретенные знания и умения в практической деятельности

  • и повседневной жизни для: исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур; вычисления объемов и площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства.

Учебно - тематимеский план 11б класс

Тема

Кол-во часов

Введение

4

Многочлены

10

Метод координат в пространстве

16

Степени и корни. Степенные функции.

23

Цилиндр, конус, шар 

18

Показательная и логарифмические функции.

30

Первообразная и интеграл

10

Объемы тел 

22

Элементы теории вероятностей и математической статистики

9

Уравнения и неравенства. Системы уравнений и неравенств

33

Повторение

17

Учебно-тренировочные тесты

10

Репетиционные экзамены в форме ЕГЭ

8

Итог

210



Содержание учебного предмета



Многочлены
Многочлены от одной переменной. Многочлены от нескольких переменных. Уравнение высших степеней.



Метод координат в пространстве
Координаты точки и координаты вектора. Скалярное произведение векторов. Движения.



Степени и корни. Степенные функции.

Понятие корня n-степени из действительного числа. Функции у=, их свойства и графики. Свойства корня n-степени. Преобразования иррациональных выражений, содержащих радикалы. Понятие степени с любым рациональным показателем. Степенные функции, их свойства и графики. Извлечение корней из комплексных чисел.



Цилиндр, конус, шар 
Цилиндр. Конус. Сфера.



Показательная и логарифмические функции.

Показательная функция, ее свойства и график. Показательные уравнения и неравенства. Понятие логарифма. Функция у = log х, ее свойства и график. Свойства логарифмов. Логарифмические уравнения. Логарифмические неравенства. Переход к новому основанию логарифма. Дифференцирование показательной и логарифмической функций.


Первообразная и интеграл

Первообразная и неопределенный интеграл. Определение интеграла.

Объемы тел 
Объем прямоугольного параллелепипеда. Объем прямой призмы и цилиндра. Объемы наклонной призмы, пирамиды, конуса. Объём шара и площадь сферы.



Элементы теории вероятностей и математической статистики
Вероятность и геометрия. Независимые повторения испытаний с двумя исходами. Статистические методы обработки информации. Гауссовая кривая. Закон больших чисел



Уравнения и неравенства. Системы уравнений и неравенств
Равносильность уравнений. Общие методы решения уравне-ний. Равносильность неравенств. Уравнения и неравенства с модулями .Иррациональные уравнения и неравенства. Доказательство неравенств. Уравнения и неравенства с двумя переменными. Системы уравнений. Задачи с параметрами.