Тест по делимости. Вариант 1.
Верно ли, что:
Если 24a делится на 9, то a делится на 3?
Если 24а делится на 9, то а делится на 9?
Если 3а делится на 2, то 3а делится на 6?
Если 5а делится на 3, то а делится на 3?
Если а делится на 15 и а не делится на 60, то а не делится на 4?
Если а делится на 4 и а не делится на 24, то а не делится на 6?
Если а делится на 6 и на 9, то а делится на 54?
Если а делится на 6, а b делится на 9, то ab делится на 54?
Если ab делится на 24, а b делится на 6, то а делится на 4?
Если а2 делится на 8, то а делится на 4?
Если а не делится на 3, то 2а не делится на 3?
Если а не делится на 3, а b не делится на 5, то a+b не делится на 8?
Если а делится на 10, а b делится на 15, то a+b делится на 5?
Если а делится на 3, а b не делится на 5, то ab не делится на 5.
Вставьте вместо звездочек такие цифры, чтобы
Число *15* делилось на 275.
Число *25* делилось на 72.
Число а при делении на 3 дает остаток 2. Какие остатки возможны при делении этого числа на 9?
Число а при делении на 20 дает остаток 2. Какие остатки возможны при делении этого числа на 8?
Число а при делении на 3 дает остаток 2, а при делении на 2 – остаток 1. С каким остатком это число делится на 6?
Число а при делении на 4 дает остаток 2, а при делении на 14 – остаток 6. С каким остатком это число делится на 28?
Число а при делении на 20 дает остаток 2, а при делении на 15 – остаток 12. С каким остатком это число делится на 12?
Какие остатки может давать куб числа при делении на 9?
Найдите все пары натуральных чисел, если известно, что их НОД равен 35, а НОК – 210.
Разложите число 13!+12! на простые множители.
Найдите остаток от деления числа 2001∙2004 + 2002∙2003 – 3002∙1002 на 7.
Тест по делимости. Вариант 2.
Верно ли, что:
Если 5а делится на 3, то 5а делится на 15?
Если 2а делится на 3, то а делится на 3?
Если 21a делится на 9, то a делится на 3?
Если 21а делится на 9, то а делится на 9?
Если а делится на 15 и а не делится на 60, то а не делится на 4?
Если а делится на 9 и а не делится на 54, то а не делится на 6?
Если а не делится на 3, то 2а не делится на 3?
Если а не делится на 2, а b не делится на 7, то a+b не делится на 9?
Если а делится на 9, а b делится на 6, то a+b делится на 3?
Если а делится на 6 и на 9, то а делится на 54?
Если а делится на 6, а b делится на 9, то ab делится на 54?
Если ab делится на 24, а b делится на 6, то а делится на 4?
Если а2 делится на 8, то а делится на 4?
Если а делится на 3, а b не делится на 5, то ab не делится на 5.
Вставьте вместо звездочек такие цифры, чтобы
Число *37* делилось на 275.
Число *29* делилось на 72.
Число а при делении на 5 дает остаток 2. Какие остатки возможны при делении этого числа на 15?
Число а при делении на 18 дает остаток 2. Какие остатки возможны при делении этого числа на 27?
Число а при делении на 3 дает остаток 2, а при делении на 2 – остаток 1. С каким остатком это число делится на 6?
Число а при делении на 9 дает остаток 3, а при делении на 15 – остаток 6. С каким остатком это число делится на 30?
Число а при делении на 28 дает остаток 2, а при делении на 21 – остаток 12. С каким остатком это число делится на 12?
Какие остатки может давать куб числа при делении на 7?
Найдите все пары натуральных чисел, если известно, что их НОД равен 15, а НОК – 210.
Разложите число 12!+11! на простые множители.
Найдите остаток от деления числа 2001∙2003 + 2002∙2004 – 3002∙1002 на 7.