СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Лекция по биологии "Генетика пола"

Категория: Биология

Нажмите, чтобы узнать подробности

Просмотр содержимого документа
«Лекция по биологии "Генетика пола"»

Тема.

Генетика пола.

 

 

Гены представляют собой структурные и функциональные единицы наследственности. В перечисленных выше примерах гены ведут себя действительно как отдельные единицы, то есть каждый из них определяет развитие одного какого-то признака, независимого от других. Поэтому может сложиться впечатление, что генотип – механическая совокупность генов, а фенотип – мозаика отдельных признаков. На самом деле это не так. Если и отдельная клетка, и организм являются целостными системами, где все биохимические и физиологические процессы строго согласованы и взаимосвязаны, то прежде всего потому, что генотип – это система взаимодействующих генов.

Взаимодействуют друг с другом как аллельные, так и неаллельные гены, расположенные в различных локусах одних и тех же и разных хромосом.

Генетика пола.

Пол у животных чаще всего определяется в момент оплодотворения. В этом случае важнейшая роль в генетическом определении пола принадлежит хромосомному набору зиготы.

Вспомним, что в наборе хромосом зиготы содержатся парные – гомологичные хромосомы, одинаковые по форме, размерам и содержащие одинаковые гены. На рисунке 3 изображен хромосомный набор человека – женщины и мужчины. В женском кариотипе все хромосомы парные. В мужском кариотипе всегда имеется одна крупная равноплечая непарная хромосома, не имеющая гомолога, и маленькая палочковидная хромосома, встречающаяся только в кариотипе мужчин. Таким образом, кариотип человека содержит 22 пары хромосом, одинаковых у мужского и женского организма, и одну пару хромосом, по которой различаются оба пола. Хромосомы, одинаковые у обоих полов, называют аутосомами. Хромосомы, по которым мужской и женский пол отличаются друг от друга, называют половыми. Половые хромосомы у женщин одинаковы, их называют Х-хромосомами. У мужчин имеется X-хромосома и одна Y-хромосома. При созревании половых клеток в результате мейоза гаметы получают гаплоидный набор хромосом. При этом все яйцеклетки имеют по одной Х-хромосоме. Пол, который образуют гаметы, одинаковые по половой хромосоме, называют гомогаметным и обозначается XX.

При сперматогенезе получаются гаметы двух сортов: половина несет Х-хромосому, половина – Y-хромосому.

Пол, который формирует гаметы, неодинаковые по половой хромосоме, называют гетерогаметным и обозначают как XY.

У человека, дрозофилы и ряда других организмов гомогаметен женский пол; у бабочек, пресмыкающихся, птиц – мужской. Кариотип петуха обозначают как XX, а кариотип курицы – XY.

У человека решающую роль в определении пола играет Y-хромосома. Если яйцеклетка оплодотворяется сперматозоидом, несущим Х-хромосому, развивается женский организм. Следовательно, женщины имеют одну Х-хромосому от отца и одну Х-хромосому от матери. Если яйцеклетка оплодотворяется сперматозоидом, несущим Y-хромосому, развивается мужской организм. Мужчина (XY) получает Х-хромосому только от матери. Этим обусловлена особенность наследования генов, расположенных в половых хромосомах.

 Наследование признаков, сцепленных с полом.

 Наследование признаков, гены которых находятся в Х- или Y-хромосомах, называют наследованием, сцепленным с полом. Таким образом, сцеплением генов с полом называют локализацию генов в половой хромосоме. Распределение этих генов в потомстве должно соответствовать распределению половых хромосом в мейозе и их сочетанию при оплодотворении. Рассмотрим наследование генов, расположенных в Х-хромосоме. Следует иметь в виду, что в половых хромосомах могут находиться и гены, не участвующие в развитии половых признаков. Так, Х-хромосома дрозофилы включает ген, от которого зависит окраска глаз. Х-хромосома человека содержит ген, определяющий свертываемость крови (Н). Его рецессивная аллель (h) вызывает тяжелое заболевание – гемофилию. В этой же хромосоме находятся гены, обусловливающие слепоту к красному и зеленому цвету (дальтонизм), форму и размер зубов, синтез ряда ферментов и т. д.

В отличие от генов, локализованных в аутосомах, при сцеплении с полом может проявиться и рецессивный ген, имеющийся в генотипе в единственном числе. Это происходит в тех случаях, когда рецессивный ген, сцепленный с Х-хромосомой, попадает в гетерогаметный организм. При кариотипе XY рецессивный ген в Х-хромосоме проявляется фенотипически, поскольку Y-хромосома негомологична Х-хромосоме и не содержит доминантной аллели. Наследование сцепленного с полом гена дальтонизма изображено в схеме (на рисунке 1 не показаны аутосомы, поскольку по ним нет различий между мужским и женским организмом).

 Рисунок 1.

Наследование гемофилии представлено на следующей схеме на примере брака женщины – носительницы гена гемофилии (XHXh) со здоровым мужчиной.

Рисунок 2.

Н – нормальная свертываемость, h – гемофилия. Половина мальчиков от такого брака будет страдать гемофилией.

При локализации гена в Y-хромосоме признаки передаются только от отца к сыну.

Контрольные вопросы:

 

  1. Дать понятие генетики пола.

  2. Каковы  способы наследования признаков, сцепленных с полом?

 
















ТЕМА.

Наследственная и модификационная  изменчивость.

Модификационная изменчивость.

На проявление гена значительное влияние оказывают другие гены, то есть выражение гена в виде признака зависит от генотипической среды. На развитие признака влияют и регуляторные системы организма, в первую очередь эндокринная. Такие признаки у петухов, как яркое оперение, большой гребень, характер пения и тембр голоса, обусловлены действием мужского полового гормона. Введение же петухам женских половых гормонов включает гены, обусловливающие синтез в печени белков, входящих в состав желтка яйцеклетки. В норме эти гены «работают» только у кур. Следовательно, внутренняя среда организма также оказывает сильное влияние на проявление генов в форме признака.

Рисунок 1.Фенотипическое изменение окраски шерсти гималайского кролика под влиянием различных температур.

 

Каждый организм развивается и обитает в определенных внешних условиях, испытывая на себе действие факторов внешней среды – колебаний температуры, освещенности, влажности, количества и качества пищи, а также вступает во взаимоотношения с другими организмами. Все эти факторы могут изменять морфологические и физиологические свойства организмов, то есть их фенотип.

Если у гималайского кролика (рис. 1-А) на спине выщипать белую шерсть и поместить его в холод (или наложить холодную повязку) (рис. 1-Б), на этом месте вырастет черная шерсть (рис. 1-В). Если черную шерсть удалить и наложить теплую повязку, вырастет белая шерсть. При выращивании гималайского кролика при температуре 30 °С вся шерсть у него будет белая. У потомства двух таких белых кроликов, выращенного в нормальных условиях, будет обычное распределение пигмента.

Таким образом, изменения признаков, вызванные действием факторов внешней среды, не наследуются.

Отметим еще одну особенность изменчивости, вызванную факторами внешней среды. Листья одного и того же растения стрелолиста (рис. 2) или водяного лютика имеют разную форму в зависимости от того, находятся ли они в воде или в воздушной среде. У всех стрелолистов в воде будут длинные тонкие листья, а у всех лютиков – изрезанные. Точно так же под действием ультрафиолетовых лучей у всех людей, если они не альбиносы, возникает загар – накопление в коже гранул пигмента меланина, хотя и в неодинаковой степени. Таким образом, на действие определенного фактора внешней среды каждый вид организмов реагирует специфически и реакция (в форме изменения признака) оказывается сходной у всех особей данного вида.

Это обстоятельство позволило Ч. Дарвину назвать ненаследственную изменчивость групповой или определенной. Вместе с тем изменчивость признака под влиянием условий внешней среды не беспредельна.

.

Рисунок.2.Стрелолист образует разные по форме листья при развитии в воздушной среде (1), на поверхности воды (2) и в воде (3)

 

К наследственной изменчивости относят такие изменения признаков организма, которые определяются генотипом и сохраняются в ряду поколений. Иногда это крупные, хорошо заметные изменения, например коротконогость у овец (рис. 1), отсутствие оперения у кур (рис. 2, 3), раздвоенные пальцы у кошек, отсутствие пигмента (альбинизм), короткопалость у человека (рис. 4). Вследствие внезапных изменений, стойко передающихся по наследству, возникли карликовый сорт душистого горошка, растения с махровыми цветками. Чаще же это мелкие, едва заметные уклонения от нормы. Наследственные изменения генетического материала называют мутациями.

Дарвин называл наследственную изменчивость неопределенной, индивидуальной изменчивостью, подчеркивая тем самым ее случайный, ненаправленный характер и относительную редкость возникновения.

 Мутационная изменчивость.

Мутации возникают вследствие изменения структуры гена (то есть последовательности нуклеотидов в ДНК) или хромосом и служат единственным источником генетического разнообразия внутри вида. Благодаря постоянному мутационному процессу возникают различные варианты генов, составляющие резерв наследственной изменчивости. Однако бесконечное разнообразие живых организмов, уникальность каждого генотипа обусловлена комбинативной изменчивостью – перегруппировкой хромосом в процессе полового размножения и участков хромосом в процессе кроссинговера. При этом типе изменчивости структура самих генов и хромосом остается такой же, но меняются сочетания наследственных задатков и характер их взаимодействия в генотипе.

Рисунок 1. Анконская мутация у овец. Справа и в центре – коротконогие баран и овца, слева – овца с нормальными ногами

Классификация мутаций. Мутации можно объединять в группы – классифицировать по характеру проявления, по месту или по уровню их возникновения. Принципиальной разницы между мутациями, отнесенными к той или иной группе, нет, так как их объединяют исходя из соображений удобства.

Мутации по характеру проявления бывают доминантными и рецессивными (рис. 2). Большинство из них рецессивны и не проявляются у гетерозигот. Это обстоятельство очень важно для существования вида. Мутации оказываются, как правило, вредными, поскольку вносят нарушения в тонко сбалансированную систему биохимических превращений. Обладатели вредных доминантных мутаций, сразу же проявляющихся в гомо- и гетерозиготном организме, часто оказываются нежизнеспособными и погибают на самых ранних этапах онтогенеза.

Рисунок 2.Брахидактилия у человека: А – внешний вид руки, Б – рентгенограмма, показывающая, что короткопалость обусловлена слиянием двух фаланг пальцев.

 

При изменении условий внешней среды, в новой обстановке, некоторые ранее вредные рецессивные мутации, составляющие резерв наследственной изменчивости, могут оказаться полезными, и носители таких мутаций получают преимущество в процессе естественного отбора.

Мутации нередко понижают жизнеспособность (рис. 4) или плодовитость. Мутации, резко снижающие жизнеспособность, частично или полностью останавливающие развитие, называют полулетальными, а несовместимые с жизнью – летальными. У человека к таким мутациям относится рецессивный ген гемофилии, причем у мужчин он носит полулетальный характер, а гомозиготные женщины оказываются нежизнеспособными.

Мутации подразделяют по месту их возникновения. Мутация, возникшая в половых клетках, не влияет на признаки данного организма, а проявляется только в следующем поколении. Такие мутации называют генеративными. Если изменяются гены в соматических клетках, такие мутации проявляются у данного организма и не передаются потомству при половом размножении. Но при бесполом размножении, если организм развивается из клетки или группы клеток, имеющих изменившийся – мутировавший – ген, мутации могут передаваться потомству. Такие мутации называют соматическими. В растениеводстве соматические мутации используются для выведения новых сортов культурных растений. Пример соматической мутации у млекопитающих – изредка встречающееся черное пятно на фоне коричневой окраски шерсти у каракулевых овец.

Рисунок 5. Семена ржи. Слева – диплоидный сорт (2n = 14), справа – тетраплоидный сорт (4n = 18)

Мутации классифицируют и по уровню их возникновения

  1. Изменения, обусловленные заменой одного или нескольких нуклеотидов в пределах одного гена, называют генными или точковыми мутациями. Они влекут за собой изменения структуры строения белков, заключающиеся в появлении новой последовательности аминокислот в полипептидной цепи, и, как следствие, изменения функциональной активности белковой молекулы.

  2. Изменения структуры хромосом называют хромосомными мутациями. Эти мутации могут возникать вследствие утраты части хромосомы. Если в утраченный участок входят жизненно важные гены, то такая мутация может привести организм к гибели. Потеря небольшой части 21-й хромосомы у человека служит причиной развития у детей тяжелого заболевания – острого лейкоза. В других случаях оторвавшийся участок может присоединиться к негомологичной хромосоме, в результате чего возникает новая комбинация генов, изменяющая характер их взаимодействия.

  3. К мутациям относятся также изменения кариотипа, кратные или некратные гаплоидному числу хромосом. Вследствие нерасхождения какой-либо пары гомологичных хромосом в мейозе одна из образовавшихся гамет содержит на одну хромосому меньше, а другая на одну хромосому больше, чем в нормальном гаплоидном наборе анэуплоидия. Слияние с нормальной гаплоидной гаметой при оплодотворении приводит к образованию зиготы с меньшим или большим числом хромосом по сравнению с диплоидным набором, характерным для данного вида. В таких случаях нарушение генного баланса сопровождается нарушением развития. Известный пример – болезнь Дауна у человека, причина которой – присутствие в кариотипе трех хромосом 21-й пары.

Свойства мутаций

  1. Мутации возникают внезапно, скачкообразно.

  2. Мутации наследственны, то есть стойко передаются из поколения в поколение.

  3. Мутации случайны и ненаправленны – мутировать может любой ген, вызывая изменение как незначительных, так и жизненно важных признаков.

  4. Одни и те же мутации могут возникать повторно.

  5. По своему проявлению мутации могут быть полезными и вредными, доминантными и рецессивными.

Способность к мутированию – одно из свойств гена. Каждая отдельная мутация вызывается какой-то причиной, но в большинстве случаев эти причины неизвестны. Мутации связаны с изменениями во внешней среде. Это убедительно доказывается тем, что путем воздействия внешними факторами удается резко повысить их число.

Впервые в опыте резкое повышение частоты наследственных изменений было получено с помощью рентгеновских лучей. Под их влиянием число возникающих мутаций удалось повысить более чем в 150 раз. Экспериментально мутации вызваны у самых разных организмов: от бактерий и вирусов до цветковых растений и млекопитающих. Кроме лучей рентгена и других форм ионизирующей радиации мутации могут быть обусловлены химическими и физическими воздействиями: температурой, изменением газового режима, влажности и т. п. Влияния, затрагивающие процессы обмена веществ, особенно синтез ДНК, оказывают действие и на мутационный процесс.

Контрольные вопросы:

  1. Привести пример фенотипического изменения признака  под влиянием различных температур.

  2. Привести классификацию мутаций.

  3. Каковы свойства мутаций?