СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

EГЭ 2024 Декабрь Математика Вариант 2

Категория: Математика

Нажмите, чтобы узнать подробности

1.  Тип 1 № 27943

К окружности, вписанной в треугольник ABC, проведены три касательные. Периметры отсеченных треугольников равны 6, 8, 10. Найдите периметр данного треугольника.

        2.  Тип 2 № 27731

Найдите квадрат длины вектора  +

        3.  Тип 3 № 27099

Объем куба равен Найдите его диагональ.

        4.  Тип 4 № 320183

Перед началом футбольного матча судья бросает монетку, чтобы определить, какая из команд начнёт игру с мячом. Команда «Физик» играет три матча с разными командами. Найдите вероятность того, что в этих играх «Физик» выиграет жребий ровно два раза.

        5.  Тип 5 № 320206

В Волшебной стране бывает два типа погоды: хорошая и отличная, причём погода, установившись утром, держится неизменной весь день. Известно, что с вероятностью 0,8 погода завтра будет такой же, как и сегодня. Сегодня 3 июля, погода в Волшебной стране хорошая. Найдите вероятность того, что 6 июля в Волшебной стране будет отличная погода.

        6.  Тип 6 № 77379

Решите уравнение

        7.  Тип 7 № 26829

Найдите значение выражения при

        8.  Тип 8 № 119973

Прямая является касательной к графику функции Найдите b, учитывая, что абсцисса точки касания больше 0.

        9.  Тип 9 № 28000

Датчик сконструирован таким образом, что его антенна ловит радиосигнал, который затем преобразуется в электрический сигнал, изменяющийся со временем по закону где t − время в секундах, амплитуда В, частота /с, фаза Датчик настроен так, что если напряжение в нeм не ниже чем В, загорается лампочка. Какую часть времени (в процентах) на протяжении первой секунды после начала работы лампочка будет гореть?

        10.  Тип 10 № 99568

Семья состоит из мужа, жены и их дочери студентки. Если бы зарплата мужа увеличилась вдвое, общий доход семьи вырос бы на 67%. Если бы стипендия дочери уменьшилась втрое, общий доход семьи сократился бы на 4%. Сколько процентов от общего дохода семьи составляет зарплата жены?

        11.  Тип 11 № 508903

На рисунке изображён график функции Найдите значение x, при котором

        12.  Тип 12 № 77492

Найдите точку максимума функции принадлежащую промежутку

        13.  Тип 13 № 505152

а)  Решите уравнение

б)  Найдите все корни этого уравнения, принадлежащие отрезку

          14.  Тип 14 № 520822

В кубе ABCDA1B1C1D1 все ребра равны 6.

а)  Докажите, что угол между прямыми AC и BC1 равен 60°.

б)  Найдите расстояние между прямыми AC и BC1.

          15.  Тип 15 № 508345

Решите неравенство:

          16.  Тип 16 № 509583

Жанна взяла в банке в кредит 1,2 млн рублей на срок 24 месяца. По договору Жанна должна вносить в банк часть денег в конце каждого месяца. Каждый месяц общая сумма долга возрастает на 2%, а затем уменьшается на сумму, уплаченную Жанной банку в конце месяца. Суммы, выплачиваемые Жанной, подбираются так, чтобы сумма долга уменьшалась равномерно, то есть на одну и ту же величину каждый месяц. Какую сумму Жанна выплатит банку в течение первого года кредитования?

          17.  Тип 17 № 507262

Диагональ AC прямоугольника ABCD с центром O образует со стороной AB угол 30°. Точка E лежит вне прямоугольника, причём ∠BEC = 120°.

а)  Докажите, что ∠CBE = ∠COE.

б)  Прямая OE пересекает сторону AD прямоугольника в точке K. Найдите EK, если известно, что BE = 40 и CE  =  24.

          18.  Тип 18 № 513111

Найдите все значения a, при каждом из которых система

 

 

имеет ровно два различных решения.

          19.  Тип 19 № 519478

На доске написано n чисел ai (i = 1, 2, …, n). Каждое из них не меньше 50 и не больше 150. Каждое из этих чисел уменьшают на ri%. При этом либо ri = 2%, либо число ai уменьшается на 2, то есть становится равным ai − 2. (Какие-то числа уменьшились на число 2, а какие-то  — на 2 процента).

а)  Может ли среднее арифметическое чисел r1, r2, …, rn быть равным 5?

б)  Могло ли так получиться, что среднее арифметическое чисел r1, r2, …, rn больше 2, при этом сумма чисел a1, a2 … an уменьшилась более чем на 2n?

в)  Пусть всего чисел 30, а после выполнения описанной операции их сумма уменьшилась на 40. Найдите наибольшее возможное значение среднего арифметического чисел r1, r2, …, rn.