На рисунке схема дорог изображена в виде графа, в таблице содержатся сведения о длине этих дорог в километрах.
П1
П2
П3
П4
П5
П6
П7
П8
П1
62
84
56
58
П2
62
46
92
П3
46
74
П4
92
50
88
П5
50
П6
84
74
68
П7
56
68
48
П8
58
88
48
Так как таблицу и схему рисовали независимо друг от друга, то нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Определите длину дороги из пункта Б в пункт Г. В ответе запишите целое число.
ВНИМАНИЕ. Длины отрезков на схеме не отражают длины дорог.
Логическая функция F задаётся выражением ((x ≡ ¬y) → (y ∧ ¬z)) ∨ (z ∧ ¬w). На рисунке приведён частично заполненный фрагмент таблицы истинности функции F, содержащий неповторяющиеся строки. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.
Переменная 1
Переменная 2
Переменная 3
Переменная 4
Функция
0
0
0
0
0
0
0
0
0
В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы (сначала — буква, соответствующая первому столбцу; затем — буква, соответствующая второму столбцу, и т. д.). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.
Пример. Пусть задано выражение x → y, зависящее от двух переменных x и y, и фрагмент таблицы истинности:
Переменная 1
Переменная 2
Функция
???
???
F
0
1
0
Тогда первому столбцу соответствует переменная y, а второму столбцу соответствует переменная x. В ответе нужно написать: yx.
Таблица «Движение товаров» содержит записи о поставках товаров в магазины в течение первой декады июня 2021 г., а также информацию о проданных товарах. Поле Тип операции содержит значение Поступление или Продажа, а в соответствующее поле Количество упаковок, шт. занесена информация о том, сколько упаковок товара поступило в магазин или было продано в течение дня. Заголовок таблицы имеет следующий вид.
ID операции
Дата
ID магазина
Артикул
Тип операции
Количество упаковок,шт.
Цена,руб./шт.
Таблица «Товар» содержит информацию об основных характеристиках каждого товара. Заголовок таблицы имеет следующий вид.
Артикул
Отдел
Наименование
Ед. изм.
Количествов упаковке
Поставщик
Таблица «Магазин» содержит информацию о местонахождении магазинов. Заголовок таблицы имеет следующий вид.
ID магазина
Район
Адрес
На рисунке приведена схема указанной базы данных.
Используя информацию из приведённой базы данных, определите, на сколько увеличилось количество упаковок кофе растворимого, имеющихся в наличии в магазинах Первомайского района, за период с 1 по 10 июня включительно.
По каналу связи передаются сообщения, содержащие только заглавные русские буквы. Для передачи используется двоичный код, удовлетворяющий условию Фано. Кодовые слова для некоторых букв известны: А — 010, Б — 101, В — 1001, Г — 111, Д — 0110, Е — 110. Какое наименьшее количество двоичных знаков потребуется для кодирования слова ЛИЛИЯ?
Примечание. Условие Фано означает, что никакое кодовое слово не является началом другого кодового слова. Это обеспечивает возможность однозначной расшифровки закодированных сообщений.
На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число следующим образом.
1. Строится двоичная запись числа N.
2. К этой записи дописывается справа два нуля, если число четное, или две единицы в противном случае
Укажите максимальное число N, после обработки которого с помощью этого алгоритма получается число менее 94. В ответе это число запишите в десятичной системе.
Исполнитель Черепаха передвигается по плоскости и оставляет след в виде линии. Черепаха может выполнять две команды: Вперёд n (n — число) и Направо m (m — число). По команде Вперёд n Черепаха перемещается вперёд на n единиц. По команде Направо m Черепаха поворачивается на месте на m градусов по часовой стрелке, при этом соответственно меняется направление дальнейшего движения.
В начальный момент Черепаха находится в начале координат и направлена вверх (вдоль положительного направления оси ординат).
Запись Повтори k [Команда1 Команда2 … КомандаS] означает, что заданная последовательность из S команд повторится k раз.
Черепаха выполнила следующую программу:
Повтори 4 [Вперёд 12 Направо 90]
Повтори 5 [Вперёд 4 Направо 45].
Определите, сколько различных точек с целочисленными координатами будет находиться на линиях, полученных при выполнении данной программы.
Камера делает фотоснимки размером 250 × 300 пикселей. На хранение одного кадра отводится 40 Кбайт. Найдите максимально возможное количество цветов в палитре изображения.
Пётр составляет таблицу кодовых слов для передачи сообщений, каждому сообщению соответствует своё кодовое слово. В качестве кодовых слов Пётр использует все пятибуквенные слова в алфавите {A, B, C, D, E, F}, удовлетворяющие такому условию: кодовое слово не может начинаться с буквы F и заканчиваться буквой A. Сколько различных кодовых слов может использовать Пётр?
Повесть братьев Стругацких «Понедельник начинается в субботу» состоит из трёх историй. Определите, сколько раз в третьей истории, включая заголовки, эпиграфы и сноски, встречается слово «ты» или «Ты». Учитывать следует только эту форму слова, другие формы («тебе», «тебя» и т. д.) включать в подсчёт не нужно.
Для регистрации на сайте некоторой страны пользователю требуется придумать пароль. Длина пароля — ровно 9 символов. В качестве символов могут быть использованы десятичные цифры и 29 различных букв местного алфавита, причём все буквы используются в двух начертаниях: как строчные, так и прописные (регистр буквы имеет значение!). Под хранение каждого такого пароля на компьютере отводится одинаковое и минимально возможное целое количество байтов. При этом используется посимвольное кодирование, и все символы кодируются одинаковым и минимально возможным количеством битов. Определите объём памяти, который используется для хранения 20 паролей. (Ответ дайте в байтах.)
Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр.
А) заменить (v, w).
Эта команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Например, выполнение команды заменить (111, 27) преобразует строку 05111150 в строку 0527150.
Если в строке нет вхождений цепочки v, то выполнение команды заменить (v, w) не меняет эту строку.
Б) нашлось (v).
Эта команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Строка
исполнителя при этом не изменяется.
Цикл
ПОКА условие
последовательность команд
КОНЕЦ ПОКА
выполняется, пока условие истинно.
В конструкции
ЕСЛИ условие
ТО команда1
КОНЕЦ ЕСЛИ
выполняется команда1 (если условие истинно).
В конструкции
ЕСЛИ условие
ТО команда1
ИНАЧЕ команда2
КОНЕЦ ЕСЛИ
выполняется команда1 (если условие истинно) или команда2 (если условие ложно).
Дана программа для Редактора:
НАЧАЛО
ПОКА нашлось (>1) ИЛИ нашлось (>2) ИЛИ нашлось (>3)
ЕСЛИ нашлось (>1)
ТО заменить (>1, 22>)
КОНЕЦ ЕСЛИ
ЕСЛИ нашлось (>2)
ТО заменить (>2, 2>)
КОНЕЦ ЕСЛИ
ЕСЛИ нашлось (>3)
ТО заменить (>3, 1>)
КОНЕЦ ЕСЛИ
КОНЕЦ ПОКА
КОНЕЦ
На вход приведённой ниже программе поступает строка, начинающаяся с символа «>», а затем содержащая 26 цифр 1, 10 цифр 2 и 14 цифр 3, расположенных в произвольном порядке.
Определите сумму числовых значений цифр строки, получившейся в результате выполнения программы. Так, например, если результат работы программы представлял бы собой строку, состоящую из 50 цифр 4, то верным ответом было бы число 200.
На месте преступления были обнаружены четыре обрывка бумаги. Следствие установило, что на них записаны фрагменты одного IP-адреса. Криминалисты обозначили эти фрагменты буквами А, Б, В и Г. Восстановите IP-адрес. В ответе укажите последовательность букв, обозначающих фрагменты, в порядке, соответствующем IP-адресу. Если будет несколько вариантов решения, запишите их все через запятую.
Операнды арифметического выражения записаны в системе счисления с основаниями 12 и 17:
2ABx12 + x8E17.
В записи чисел переменной x обозначена неизвестная цифра из алфавита десятичной системы счисления. Определите наименьшее значение x, при котором значение данного арифметического выражения кратно 27. Для найденного значения x вычислите частное от деления значения арифметического выражения на 27 и укажите его в ответе в десятичной системе счисления. Основание системы счисления в ответе указывать не нужно.
Определите количество троек, для которых выполняются следующие условия:
— ровно два числа в тройке пятизначные;
— хотя бы одно число в тройке делится на 5;
— сумма элементов тройки больше максимального элемента последовательности, запись которого заканчивается на 321. (Гарантируется, что в последовательности есть хотя бы один элемент, запись которого заканчивается на 321.) В ответе запишите два числа: сначала количество найденных троек, затем максимальную величину суммы элементов этих троек.
Робот стоит в левом нижнем углу прямоугольного поля, в каждой клетке которого записано целое число. В некоторых клетках записано число –1, в эти клетки роботу заходить нельзя. Для вашего удобства такие клетки выделены тёмным фоном. В остальных клетках записаны положительные числа.
За один ход робот может переместиться на одну клетку вправо или на одну клетку вверх. Клетка, из которой робот не может сделать допустимого хода (справа и сверху находятся границы поля или запрещённые клетки), называется финальной. На поле может быть несколько финальных клеток.
В начальный момент робот обладает некоторым запасом энергии. Расход энергии на запуск робота равен числу, записанному в стартовой клетке.
В дальнейшем расход энергии на шаг из одной клетки в другую равен абсолютной величине разности чисел, записанных в этих клетках.
Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в пять раз. Например, имея кучу из 10 камней, за один ход можно получить кучу из 11 или 50 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.
Игра завершается в тот момент, когда количество камней в куче становится более 200. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 201 или больше камней. В начальный момент в куче было S камней, 1 ≤ S ≤ 200.
Говорят, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.
Известно, что Ваня выиграл своим первым ходом после неудачного первого хода Пети. Укажите минимальное значение S, когда такая ситуация возможна.
Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в пять раз. Например, имея кучу из 10 камней, за один ход можно получить кучу из 11 или 50 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.
Игра завершается в тот момент, когда количество камней в куче становится более 200. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 201 или больше камней. В начальный момент в куче было S камней; 1 ≤ S ≤ 200.
Говорят, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.
Найдите два таких значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:
— Петя не может выиграть за один ход;
— Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.
Найденные значения запишите в ответе в порядке возрастания без разделительных знаков.
Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в пять раз. Например, имея кучу из 10 камней, за один ход можно получить кучу из 11 или 50 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.
Игра завершается в тот момент, когда количество камней в куче становится более 200. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 201 или больше камней. В начальный момент в куче было S камней; 1 ≤ S ≤ 200.
Говорят, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.
Найдите минимальное значение S, при котором одновременно выполняются два условия:
— у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;
— у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.
В файле 22_32.xlsx содержится информация о совокупности N вычислительных процессов, которые могут выполняться параллельно или последовательно. Будем говорить, что процесс B зависит от процесса A, если для выполнения процесса B необходимы результаты выполнения процесса A. В этом случае процессы могут выполняться только последовательно.
Информация о процессах представлена в файле в виде таблицы. В первой строке таблицы указан идентификатор процесса (ID), во второй строке таблицы — время его выполнения в миллисекундах, в третьей строке перечислены с разделителем «;» ID процессов, от которых зависит данный процесс. Если процесс является независимым, то в таблице указано значение 0.
Определите минимальное время, через которое завершится выполнение всей совокупности процессов, при условии, что все независимые друг от друга процессы могут выполняться параллельно.
Типовой пример организации данных в файле:
ID процесса B
Время выполнения процесса B (мс)
ID процесса(ов) A
1
4
0
2
3
0
3
1
1;2
4
7
3
В данном случае независимые процессы 1 и 2 могут выполняться параллельно, при этом процесс 1 завершится через 4 мс, а процесс 2 — через 3 мс с момента старта. Процесс 3 может начаться только после завершения обоих процессов 1 и 2, то есть через 4 мс после старта. Он длится 1 мс и закончится через 4 + 1 = 5 мс после старта. Выполнение процесса 4 может начаться только после завершения процесса 3, то есть через 5 мс. Он длится 7 мс, так что минимальное время завершения всех процессов равно 5 + 7 = 12 мс.
У исполнителя есть две команды, которым присвоены номера.
1. Прибавить 1.
2. Умножить на 2.
Первая команда увеличивает число на экране на 1, вторая умножает его на 2.
Программа для исполнителя ТР4 — это последовательность команд.
Сколько существует программ, которые преобразуют исходное число 2 в число 35 и при этом траектория вычислений содержит число 15 и не содержит числа 31?
Траектория вычислений — это последовательность результатов выполнения всех команд программы. Например, для программы 212 при исходном числе 7 траектория будет состоять из чисел 14, 15, 30.
Текстовый файл содержит только заглавные буквы латинского алфавита (ABC…Z). Определите максимальное количество идущих подряд символов, среди которых каждая из букв C и D встречается не более двух раз.
Маска числа — это последовательность цифр, в которой могут встречаться специальные символы «?» и «*». Символ «?» означает ровно одну произвольную цифру, символ «*» означает произвольную (в том числе пустую) последовательность цифр.
Например, маске 123*4?5 соответствуют числа 123405 и 12376415.
Найдите все натуральные числа, не превышающие 1010, которые соответствуют маске 1*4239?7 и при этом без остатка делятся на 3147.
В ответе запишите все найденные числа в порядке возрастания.
В отделении банка работают два окна для обслуживания клиентов. Некоторые услуги могут быть оказаны только при обращении в определённое окно, некоторые — при обращении в любое окно. Клиент входит в отделение и встаёт в очередь к тому окну, которое оказывает необходимую ему услугу. Если услуга может быть оказана в любом окне, клиент выбирает то, в очереди к которому в данный момент меньше людей. Если очереди в оба окна одинаковые, клиент выбирает окно с меньшим номером. При этом если в очереди к выбранному окну уже стоит 14 или более человек (включая человека, которого обслуживают в данный момент), пришедший клиент сразу уходит.
Если момент завершения обслуживания одного или нескольких клиентов совпадает с моментом прихода нового клиента, то можно считать, что новый клиент пришёл после того, как обслуживание ранее пришедшего клиента завершилось и очередь сократилась.
Первая строка входного файла содержит целое число N (N ≤ 1000) — общее количество клиентов, пришедших в отделение за один рабочий день. Каждая из следующих N строк описывает одного клиента и содержит 3 целых числа: время прихода клиента в отделение (количество минут с начала рабочего дня), время, необходимое для обслуживания данного клиента, и номер окна, в которое ему необходимо обратиться (0 означает, что клиент может обратиться в любое окно). Гарантируется, что никакие два клиента не приходят одновременно.
Определите, сколько клиентов будет обслужено в течение дня в окне номер 2 и сколько клиентов покинет отделение из-за слишком больших очередей.
В ответе запишите два целых числа: сначала количество клиентов, обслуженных в окне номер 2, затем количество необслуженных клиентов.
Дана последовательность натуральных чисел. Назовём парой любые два числа из последовательности. Необходимо определить количество пар, в которых сумма чисел в паре делится без остатка на 4, а их произведение — на 59 049.
Первая строка входного файла содержит целое число N — общее количество чисел в наборе. Каждая из следующих N строк содержит одно число, не превышающее 100 000. Гарантируется, что число в ответе не превышает 2 · 109.
Вам даны два входных файла (A и B), каждый из которых имеет описанную выше структуру. В ответе укажите два числа: сначала искомое количество пар для файла A, затем — для файла B.