Тема: Энергетический обмен. Анаэробный гликолиз
Задачи:
Дать характеристику различным формам биологического окисления, разобрать анаэробный путь окисления - гликолиз
Биологическое окисление и горение
Обмен веществ (метаболизм) = ассимиляции + диссимиляции
Органические вещества пищи являются основным источником не только материи , но и энергии для жизнедеятельности клеток организма. При образовании сложных органических молекул была затрачена энергия, потенциально она находится в форме образованных химических связей. В результате реакций энергетического обмена происходит окисление сложных молекул до более простых и разрушение химических связей, при этом происходит высвобождение энергии.
Биологическое окисление в клетках происходит с участием О 2 :
А + О 2 АО 2
и без его участия, за счет дегидрирования или переноса электронов от одного вещества к другому:
АН 2 + В А + ВН 2 , где вещество А окисляется за счет вещества В;
Fe 2 + Fe 3 + + e - , где двухвалентное железо окисляется до трехвалентного.
I. С3Н4О3 СО2 + СН3СОН (уксусный альдегид)
II. СН3СОН + НАД·Н2 С2Н5ОН + НАД+
У животных и некоторых бактерий при недостатке О2 происходит молочнокислое брожение с образованием молочной кислоты:
С3Н4О3 + НАД·Н2 С3Н6О3 + НАД+
Третий этап энергетического обмена — кислородное окисление , или дыхание , происходит в митохондриях. Пировиноградная кислота проникает в митохондрии, происходит ее дегидрирование (отщепление водорода) и декарбоксилирование (отщепление углекислого газа) с образованием двухуглеродной ацетильной группы, которая вступает в цикл реакций, получивших название реакций цикла Кребса (рис. 299). Здесь происходит дальнейшее окисление, связанное с дегидрированием и декарбоксилированием. В результате на каждую разрушенную моль ПВК из митохондрии удаляется 3 моль СО2, образуется 5 пар атомов водорода, связанных с переносчиками (4 НАДН2, ФАДН2), а также моль АТФ.
Суммарная реакция гликолиза и разрушения ПВК в митохондриях до водорода и углекислого газа выглядит следующим образом:
С6Н12О6 + 6Н2О 6СО2 + 4АТФ + 12Н2
2АТФ образуются при гликолизе, две — в цикле Кребса; 2 пары атомов (2НАД·Н2)образовались при гликолизе, 10 пар — в цикле Кребса.
Рис.299. Цикл Кребса.
Последним этапом является окисление пар атомов водорода с участием О2 до Н2О с одновременным фосфорилированием АДФ до АТФ. Этот процесс происходит на внутренней мембране митохондрий. Водород передается по трем большим ферментным комплексам дыхательной цепи (флавопротеин, кофермент Q , цитохромы), расположенным во внутренней мембране митохондрий. У водорода отбираются электроны, а протоны закачиваются в межмембранное пространство митохондрий, в «протонный резервуар». Внутренняя мембрана непроницаема для ионов водорода. Электроны передаются по ферментам дыхательной цепи на цитохромоксидазу . Когда разность потенциалов на внешней и внутренней стороне внутренней мембраны достигает 200 мВ, протоны (12Н2) проходят через канал фермента АТФ-синтетазы и с помощью цитохромоксидазы происходит восстановление кислорода до воды (12Н2О) с выделением энергии, часть которой (55%) запасается в форме 34АТФ (рис. 300).
Рис. 300. Дыхательная цепь и АТФ-синтетаза.
Суммарная реакция энергетического обмена выглядит так:
С6Н12О6 + 6О2 6СО2 + 6Н2О + 38АТФ + Qт
Если внутренняя мембрана повреждена, то окисление НАДН2 продолжается, но не работает АТФ-синтетаза и образования АТФ не происходит, вся энергия выделяется в форме тепла.
Биологическое окисление и горение
Процесс энергетического обмена можно разделить на три этапа:
на первом этапе происходит пищеварение, то есть сложные органические молекулы расщепляются до мономеров;
на втором происходит бескислородное окисление этих мономеров;
последнем этапе происходит окисление с участием кислорода в митохондриях.
Процесс энергетического обмена можно разделить на три этапа: на первом этапе происходит пищеварение, то есть сложные органические молекулы расщепляются до мономеров, на втором происходит бескислородное окисление этих мономеров — гликолиз, и на последнем этапе происходит окисление с участием кислорода в митохондриях.
Подготовительный этап. Под действием ферментов пищеварительного тракта или ферментов лизосом белковые молекулы расщепляются до аминокислот, жиры — до глицерина и карбоновых кислот, углеводы — до глюкозы, нуклеиновые кислоты — до нуклеотидов. Вся энергия при этом рассеивается в виде тепла.
Гликолиз, или бескислородное окисление. Окисление глюкозы в клетках без участия кислорода происходит путем дегидрирования, акцептором Н служит кофермент НАД+. Реакции протекают в цитоплазме , глюкоза с помощью 10 ферментативных реакций превращается в 2 молекулы ПВК — пировиноградной кислоты и образуется восстановленная форма переносчика водорода НАД·Н2 никотинамидаденин-динуклеотида. При этом образуется 200 кДж энергии, 120 рассеивается в форме тепла, 80 кДж запасается в форме 2 моль АТФ:
С6Н12О6 + 2АДФ + 2Н3РО4 + 2НАД+
2 С3Н4О3 + 2АТФ + 2Н2О + 2НАД·Н2
Дальнейшая судьба ПВК зависит от присутствия О2 в клетке, если О2 нет, происходит анаэробное дыхание , причем у дрожжей и растений происходит спиртовое брожение , при котором сначала происходит образование уксусного альдегида, а затем этилового спирта:
I. С3Н4О3 СО2 + СН3СОН (уксусный альдегид)
II. СН3СОН + НАД·Н2 С2Н5ОН + НАД+
У животных и некоторых бактерий при недостатке О2 происходит молочнокислое брожение с образованием молочной кислоты:
С3Н4О3 + НАД·Н2 С3Н6О3 + НАД+
Третий этап энергетического обмена — кислородное окисление , или дыхание , происходит в митохондриях. Пировиноградная кислота проникает в митохондрии, происходит ее дегидрирование (отщепление водорода) и декарбоксилирование (отщепление углекислого газа) с образованием двухуглеродной ацетильной группы, которая вступает в цикл реакций, получивших название реакций цикла Кребса (рис. 299). Здесь происходит дальнейшее окисление, связанное с дегидрированием и декарбоксилированием. В результате на каждую разрушенную моль ПВК из митохондрии удаляется 3 моль СО2, образуется 5 пар атомов водорода, связанных с переносчиками (4 НАДН2, ФАДН2), а также моль АТФ.
Суммарная реакция гликолиза и разрушения ПВК в митохондриях до водорода и углекислого газа выглядит следующим образом:
С6Н12О6 + 6Н2О 6СО2 + 4АТФ + 12Н2
2АТФ образуются при гликолизе, две — в цикле Кребса; 2 пары атомов (2НАД·Н2)образовались при гликолизе, 10 пар — в цикле Кребса.
Рис.299. Цикл Кребса.
Последним этапом является окисление пар атомов водорода с участием О2 до Н2О с одновременным фосфорилированием АДФ до АТФ. Этот процесс происходит на внутренней мембране митохондрий. Водород передается по трем большим ферментным комплексам дыхательной цепи (флавопротеин, кофермент Q , цитохромы), расположенным во внутренней мембране митохондрий. У водорода отбираются электроны, а протоны закачиваются в межмембранное пространство митохондрий, в «протонный резервуар». Внутренняя мембрана непроницаема для ионов водорода. Электроны передаются по ферментам дыхательной цепи на цитохромоксидазу . Когда разность потенциалов на внешней и внутренней стороне внутренней мембраны достигает 200 мВ, протоны (12Н2) проходят через канал фермента АТФ-синтетазы и с помощью цитохромоксидазы происходит восстановление кислорода до воды (12Н2О) с выделением энергии, часть которой (55%) запасается в форме 34АТФ (рис. 300).
Рис. 300. Дыхательная цепь и АТФ-синтетаза.
Суммарная реакция энергетического обмена выглядит так:
С6Н12О6 + 6О2 6СО2 + 6Н2О + 38АТФ + Qт
Если внутренняя мембрана повреждена, то окисление НАДН2 продолжается, но не работает АТФ-синтетаза и образования АТФ не происходит, вся энергия выделяется в форме тепла.
Биологическое окисление и горение
Подготовительный этап.
Под действием ферментов пищеварительного тракта или ферментов лизосом
Сложные органические молекулы расщепляются:
белки до ….
жиры — до ….
углеводы — до ….
нуклеиновые кислоты — ….
Вся энергия при этом рассеивается в виде тепла.
Процесс энергетического обмена можно разделить на три этапа: на первом этапе происходит пищеварение, то есть сложные органические молекулы расщепляются до мономеров, на втором происходит бескислородное окисление этих мономеров — гликолиз, и на последнем этапе происходит окисление с участием кислорода в митохондриях.
Подготовительный этап. Под действием ферментов пищеварительного тракта или ферментов лизосом белковые молекулы расщепляются до аминокислот, жиры — до глицерина и карбоновых кислот, углеводы — до глюкозы, нуклеиновые кислоты — до нуклеотидов. Вся энергия при этом рассеивается в виде тепла.
Гликолиз, или бескислородное окисление. Окисление глюкозы в клетках без участия кислорода происходит путем дегидрирования, акцептором Н служит кофермент НАД+. Реакции протекают в цитоплазме , глюкоза с помощью 10 ферментативных реакций превращается в 2 молекулы ПВК — пировиноградной кислоты и образуется восстановленная форма переносчика водорода НАД·Н2 никотинамидаденин-динуклеотида. При этом образуется 200 кДж энергии, 120 рассеивается в форме тепла, 80 кДж запасается в форме 2 моль АТФ:
С6Н12О6 + 2АДФ + 2Н3РО4 + 2НАД+
2 С3Н4О3 + 2АТФ + 2Н2О + 2НАД·Н2
Дальнейшая судьба ПВК зависит от присутствия О2 в клетке, если О2 нет, происходит анаэробное дыхание , причем у дрожжей и растений происходит спиртовое брожение , при котором сначала происходит образование уксусного альдегида, а затем этилового спирта:
I. С3Н4О3 СО2 + СН3СОН (уксусный альдегид)
II. СН3СОН + НАД·Н2 С2Н5ОН + НАД+
У животных и некоторых бактерий при недостатке О2 происходит молочнокислое брожение с образованием молочной кислоты:
С3Н4О3 + НАД·Н2 С3Н6О3 + НАД+
Третий этап энергетического обмена — кислородное окисление , или дыхание , происходит в митохондриях. Пировиноградная кислота проникает в митохондрии, происходит ее дегидрирование (отщепление водорода) и декарбоксилирование (отщепление углекислого газа) с образованием двухуглеродной ацетильной группы, которая вступает в цикл реакций, получивших название реакций цикла Кребса (рис. 299). Здесь происходит дальнейшее окисление, связанное с дегидрированием и декарбоксилированием. В результате на каждую разрушенную моль ПВК из митохондрии удаляется 3 моль СО2, образуется 5 пар атомов водорода, связанных с переносчиками (4 НАДН2, ФАДН2), а также моль АТФ.
Суммарная реакция гликолиза и разрушения ПВК в митохондриях до водорода и углекислого газа выглядит следующим образом:
С6Н12О6 + 6Н2О 6СО2 + 4АТФ + 12Н2
2АТФ образуются при гликолизе, две — в цикле Кребса; 2 пары атомов (2НАД·Н2)образовались при гликолизе, 10 пар — в цикле Кребса.
Рис.299. Цикл Кребса.
Последним этапом является окисление пар атомов водорода с участием О2 до Н2О с одновременным фосфорилированием АДФ до АТФ. Этот процесс происходит на внутренней мембране митохондрий. Водород передается по трем большим ферментным комплексам дыхательной цепи (флавопротеин, кофермент Q , цитохромы), расположенным во внутренней мембране митохондрий. У водорода отбираются электроны, а протоны закачиваются в межмембранное пространство митохондрий, в «протонный резервуар». Внутренняя мембрана непроницаема для ионов водорода. Электроны передаются по ферментам дыхательной цепи на цитохромоксидазу . Когда разность потенциалов на внешней и внутренней стороне внутренней мембраны достигает 200 мВ, протоны (12Н2) проходят через канал фермента АТФ-синтетазы и с помощью цитохромоксидазы происходит восстановление кислорода до воды (12Н2О) с выделением энергии, часть которой (55%) запасается в форме 34АТФ (рис. 300).
Рис. 300. Дыхательная цепь и АТФ-синтетаза.
Суммарная реакция энергетического обмена выглядит так:
С6Н12О6 + 6О2 6СО2 + 6Н2О + 38АТФ + Qт
Если внутренняя мембрана повреждена, то окисление НАДН2 продолжается, но не работает АТФ-синтетаза и образования АТФ не происходит, вся энергия выделяется в форме тепла.
Биологическое окисление и горение
Процесс энергетического обмена можно разделить на три этапа: на первом этапе происходит пищеварение, то есть сложные органические молекулы расщепляются до мономеров, на втором происходит бескислородное окисление этих мономеров — гликолиз, и на последнем этапе происходит окисление с участием кислорода в митохондриях.
Подготовительный этап. Под действием ферментов пищеварительного тракта или ферментов лизосом белковые молекулы расщепляются до аминокислот, жиры — до глицерина и карбоновых кислот, углеводы — до глюкозы, нуклеиновые кислоты — до нуклеотидов. Вся энергия при этом рассеивается в виде тепла.
Гликолиз, или бескислородное окисление. Окисление глюкозы в клетках без участия кислорода происходит путем дегидрирования, акцептором Н служит кофермент НАД+. Реакции протекают в цитоплазме , глюкоза с помощью 10 ферментативных реакций превращается в 2 молекулы ПВК — пировиноградной кислоты и образуется восстановленная форма переносчика водорода НАД·Н2 никотинамидаденин-динуклеотида. При этом образуется 200 кДж энергии, 120 рассеивается в форме тепла, 80 кДж запасается в форме 2 моль АТФ:
С6Н12О6 + 2АДФ + 2Н3РО4 + 2НАД+
2 С3Н4О3 + 2АТФ + 2Н2О + 2НАД·Н2
Дальнейшая судьба ПВК зависит от присутствия О2 в клетке, если О2 нет, происходит анаэробное дыхание , причем у дрожжей и растений происходит спиртовое брожение , при котором сначала происходит образование уксусного альдегида, а затем этилового спирта:
I. С3Н4О3 СО2 + СН3СОН (уксусный альдегид)
II. СН3СОН + НАД·Н2 С2Н5ОН + НАД+
У животных и некоторых бактерий при недостатке О2 происходит молочнокислое брожение с образованием молочной кислоты:
С3Н4О3 + НАД·Н2 С3Н6О3 + НАД+
Третий этап энергетического обмена — кислородное окисление , или дыхание , происходит в митохондриях. Пировиноградная кислота проникает в митохондрии, происходит ее дегидрирование (отщепление водорода) и декарбоксилирование (отщепление углекислого газа) с образованием двухуглеродной ацетильной группы, которая вступает в цикл реакций, получивших название реакций цикла Кребса (рис. 299). Здесь происходит дальнейшее окисление, связанное с дегидрированием и декарбоксилированием. В результате на каждую разрушенную моль ПВК из митохондрии удаляется 3 моль СО2, образуется 5 пар атомов водорода, связанных с переносчиками (4 НАДН2, ФАДН2), а также моль АТФ.
Суммарная реакция гликолиза и разрушения ПВК в митохондриях до водорода и углекислого газа выглядит следующим образом:
С6Н12О6 + 6Н2О 6СО2 + 4АТФ + 12Н2
2АТФ образуются при гликолизе, две — в цикле Кребса; 2 пары атомов (2НАД·Н2)образовались при гликолизе, 10 пар — в цикле Кребса.
Рис.299. Цикл Кребса.
Последним этапом является окисление пар атомов водорода с участием О2 до Н2О с одновременным фосфорилированием АДФ до АТФ. Этот процесс происходит на внутренней мембране митохондрий. Водород передается по трем большим ферментным комплексам дыхательной цепи (флавопротеин, кофермент Q , цитохромы), расположенным во внутренней мембране митохондрий. У водорода отбираются электроны, а протоны закачиваются в межмембранное пространство митохондрий, в «протонный резервуар». Внутренняя мембрана непроницаема для ионов водорода. Электроны передаются по ферментам дыхательной цепи на цитохромоксидазу . Когда разность потенциалов на внешней и внутренней стороне внутренней мембраны достигает 200 мВ, протоны (12Н2) проходят через канал фермента АТФ-синтетазы и с помощью цитохромоксидазы происходит восстановление кислорода до воды (12Н2О) с выделением энергии, часть которой (55%) запасается в форме 34АТФ (рис. 300).
Рис. 300. Дыхательная цепь и АТФ-синтетаза.
Суммарная реакция энергетического обмена выглядит так:
С6Н12О6 + 6О2 6СО2 + 6Н2О + 38АТФ + Qт
Если внутренняя мембрана повреждена, то окисление НАДН2 продолжается, но не работает АТФ-синтетаза и образования АТФ не происходит, вся энергия выделяется в форме тепла.
Биологическое окисление и горение
Гликолиз, или бескислородное окисление.
Окисление глюкозы в клетках без участия кислорода происходит путем дегидрирования, акцептором Н служит кофермент НАД + . Реакции протекают в цитоплазме, глюкоза с помощью 10 ферментативных реакций превращается в 2 молекулы ПВК — пировиноградной кислоты и образуется восстановленная форма переносчика водорода НАД·Н 2 (никотинамидаденин-динуклеотида).
Процесс энергетического обмена можно разделить на три этапа: на первом этапе происходит пищеварение, то есть сложные органические молекулы расщепляются до мономеров, на втором происходит бескислородное окисление этих мономеров — гликолиз, и на последнем этапе происходит окисление с участием кислорода в митохондриях.
Подготовительный этап. Под действием ферментов пищеварительного тракта или ферментов лизосом белковые молекулы расщепляются до аминокислот, жиры — до глицерина и карбоновых кислот, углеводы — до глюкозы, нуклеиновые кислоты — до нуклеотидов. Вся энергия при этом рассеивается в виде тепла.
Гликолиз, или бескислородное окисление. Окисление глюкозы в клетках без участия кислорода происходит путем дегидрирования, акцептором Н служит кофермент НАД+. Реакции протекают в цитоплазме , глюкоза с помощью 10 ферментативных реакций превращается в 2 молекулы ПВК — пировиноградной кислоты и образуется восстановленная форма переносчика водорода НАД·Н2 никотинамидаденин-динуклеотида. При этом образуется 200 кДж энергии, 120 рассеивается в форме тепла, 80 кДж запасается в форме 2 моль АТФ:
С6Н12О6 + 2АДФ + 2Н3РО4 + 2НАД+
2 С3Н4О3 + 2АТФ + 2Н2О + 2НАД·Н2
Дальнейшая судьба ПВК зависит от присутствия О2 в клетке, если О2 нет, происходит анаэробное дыхание , причем у дрожжей и растений происходит спиртовое брожение , при котором сначала происходит образование уксусного альдегида, а затем этилового спирта:
I. С3Н4О3 СО2 + СН3СОН (уксусный альдегид)
II. СН3СОН + НАД·Н2 С2Н5ОН + НАД+
У животных и некоторых бактерий при недостатке О2 происходит молочнокислое брожение с образованием молочной кислоты:
С3Н4О3 + НАД·Н2 С3Н6О3 + НАД+
Третий этап энергетического обмена — кислородное окисление , или дыхание , происходит в митохондриях. Пировиноградная кислота проникает в митохондрии, происходит ее дегидрирование (отщепление водорода) и декарбоксилирование (отщепление углекислого газа) с образованием двухуглеродной ацетильной группы, которая вступает в цикл реакций, получивших название реакций цикла Кребса (рис. 299). Здесь происходит дальнейшее окисление, связанное с дегидрированием и декарбоксилированием. В результате на каждую разрушенную моль ПВК из митохондрии удаляется 3 моль СО2, образуется 5 пар атомов водорода, связанных с переносчиками (4 НАДН2, ФАДН2), а также моль АТФ.
Суммарная реакция гликолиза и разрушения ПВК в митохондриях до водорода и углекислого газа выглядит следующим образом:
С6Н12О6 + 6Н2О 6СО2 + 4АТФ + 12Н2
2АТФ образуются при гликолизе, две — в цикле Кребса; 2 пары атомов (2НАД·Н2)образовались при гликолизе, 10 пар — в цикле Кребса.
Рис.299. Цикл Кребса.
Последним этапом является окисление пар атомов водорода с участием О2 до Н2О с одновременным фосфорилированием АДФ до АТФ. Этот процесс происходит на внутренней мембране митохондрий. Водород передается по трем большим ферментным комплексам дыхательной цепи (флавопротеин, кофермент Q , цитохромы), расположенным во внутренней мембране митохондрий. У водорода отбираются электроны, а протоны закачиваются в межмембранное пространство митохондрий, в «протонный резервуар». Внутренняя мембрана непроницаема для ионов водорода. Электроны передаются по ферментам дыхательной цепи на цитохромоксидазу . Когда разность потенциалов на внешней и внутренней стороне внутренней мембраны достигает 200 мВ, протоны (12Н2) проходят через канал фермента АТФ-синтетазы и с помощью цитохромоксидазы происходит восстановление кислорода до воды (12Н2О) с выделением энергии, часть которой (55%) запасается в форме 34АТФ (рис. 300).
Рис. 300. Дыхательная цепь и АТФ-синтетаза.
Суммарная реакция энергетического обмена выглядит так:
С6Н12О6 + 6О2 6СО2 + 6Н2О + 38АТФ + Qт
Если внутренняя мембрана повреждена, то окисление НАДН2 продолжается, но не работает АТФ-синтетаза и образования АТФ не происходит, вся энергия выделяется в форме тепла.
При этом образуется 200 кДж энергии, 120 рассеивается в форме тепла, 80 кДж запасается в форме 2 моль АТФ:
С 6 Н 12 О 6 + 2АДФ + 2Н 3 РО 4 + 2НАД +
2 С 3 Н 4 О 3 + 2АТФ + 2Н 2 О + 2НАД·Н 2
Биологическое окисление и горение
Дальнейшая судьба ПВК зависит от присутствия О 2 в клетке.
Если О 2 нет, происходит анаэробное брожение (дыхание) , причем у дрожжей и растений происходит спиртовое брожение , при котором сначала происходит образование уксусного альдегида, а затем этилового спирта:
У животных и некоторых бактерий при недостатке О2 происходит молочнокислое брожение с образованием молочной кислоты:
С3Н4О3 + НАД·Н2 С3Н6О3 + НАД+
Третий этап энергетического обмена — кислородное окисление , или дыхание , происходит в митохондриях. Пировиноградная кислота проникает в митохондрии, происходит ее дегидрирование (отщепление водорода) и декарбоксилирование (отщепление углекислого газа) с образованием двухуглеродной ацетильной группы, которая вступает в цикл реакций, получивших название реакций цикла Кребса (рис. 299). Здесь происходит дальнейшее окисление, связанное с дегидрированием и декарбоксилированием. В результате на каждую разрушенную моль ПВК из митохондрии удаляется 3 моль СО2, образуется 5 пар атомов водорода, связанных с переносчиками (4 НАДН2, ФАДН2), а также моль АТФ.
Суммарная реакция гликолиза и разрушения ПВК в митохондриях до водорода и углекислого газа выглядит следующим образом:
С6Н12О6 + 6Н2О 6СО2 + 4АТФ + 12Н2
2АТФ образуются при гликолизе, две — в цикле Кребса; 2 пары атомов (2НАД·Н2)образовались при гликолизе, 10 пар — в цикле Кребса.
Рис.299. Цикл Кребса.
Последним этапом является окисление пар атомов водорода с участием О2 до Н2О с одновременным фосфорилированием АДФ до АТФ. Этот процесс происходит на внутренней мембране митохондрий. Водород передается по трем большим ферментным комплексам дыхательной цепи (флавопротеин, кофермент Q , цитохромы), расположенным во внутренней мембране митохондрий. У водорода отбираются электроны, а протоны закачиваются в межмембранное пространство митохондрий, в «протонный резервуар». Внутренняя мембрана непроницаема для ионов водорода. Электроны передаются по ферментам дыхательной цепи на цитохромоксидазу . Когда разность потенциалов на внешней и внутренней стороне внутренней мембраны достигает 200 мВ, протоны (12Н2) проходят через канал фермента АТФ-синтетазы и с помощью цитохромоксидазы происходит восстановление кислорода до воды (12Н2О) с выделением энергии, часть которой (55%) запасается в форме 34АТФ (рис. 300).
Рис. 300. Дыхательная цепь и АТФ-синтетаза.
Суммарная реакция энергетического обмена выглядит так:
С6Н12О6 + 6О2 6СО2 + 6Н2О + 38АТФ + Qт
Если внутренняя мембрана повреждена, то окисление НАДН2 продолжается, но не работает АТФ-синтетаза и образования АТФ не происходит, вся энергия выделяется в форме тепла.
I. 2С 3 Н 4 О 3 2СО 2 + 2СН 3 СОН (уксусный альдегид)
II. 2СН 3 СОН + 2НАД·Н 2 2С 2 Н 5 ОН + 2НАД +
Биологическое окисление и горение
У животных и некоторых бактерий при недостатке О 2 происходит молочнокислое брожение с образованием молочной кислоты:
**Тест 1. На подготовительном этапе энергетического обмена происходит:
Гидролиз белков до аминокислот.
Гидролиз жиров до глицерина и карбоновых кислот.
Гидролиз углеводов до моносахаридов.
Гидролиз нуклеиновых кислот до нуклеотидов.
Тест 2. Обеспечивают гликолиз:
Ферменты пищеварительного тракта и лизосом.
Ферменты цитоплазмы.
Ферменты цикла Кребса.
Ферменты дыхательной цепи.
Тест 3. В результате бескислородного окисления в клетках у животных при недостатке О2 образуется:
ПВК.
Молочная кислота.
Этиловый спирт.
Ацетил-КоА.
Тест 4. В результате бескислородного окисления в клетках у растений при недостатке О2 образуется:
ПВК.
Молочная кислота.
Этиловый спирт.
Ацетил-КоА.
Тест 5. При гликолизе моль глюкозы образуется всего энергии:
200 кДж.
400 кДж.
600 кДж.
800 кДж.
Тест 6. Три моль глюкозы подверглось гликолизу в животных клетках при недостатке кислорода. При этом углекислого газа выделилось:
3 моль.
6 моль.
12 моль.
Углекислый газ в животных клетках при гликолизе не выделяется.
***Тест 7. К биологическому окислению относятся:
Окисление вещества А в реакции: А + О2 АО2.
Дегидрирование вещества А в реакции: АН2 + В А + ВН2.
Потеря электронов ( Fe 2+ в реакции Fe 2+ Fe 3+ + е- ).
Приобретение электронов ( Fe 3+ в реакции Fe 2+ Fe 3+ + е- ).
**Тест 8. Реакции подготовительного этапа происходят:
В пищеварительном тракте.
В митохондриях.
В цитоплазме.
В лизосомах.
Тест 9. Энергия, которая выделяется в реакциях подготовительного этапа:
Рассеивается в форме тепла.
Запасается в форме АТФ.
Большая часть рассеивается в форме тепла, меньшая — запасется в форме АТФ.
Меньшая часть рассеивается в форме тепла, большая — запасется в форме АТФ.
Тест 10. Энергия, которая выделяется в реакциях гликолиза:
Рассеивается в форме тепла.
Запасается в форме АТФ.
120 кДж рассеивается в форме тепла, 80 кДж — запасется в форме АТФ.
80 кДж рассеивается в форме тепла, 120 кДж — запасется в форме АТФ.
2С 3 Н 4 О 3 + 2НАД·Н 2 2С 3 Н 6 О 3 + 2НАД +
Повторение. Какие ответы верны:
**Тест 1. На подготовительном этапе энергетического обмена происходит:
- Гидролиз белков до аминокислот.
- Гидролиз жиров до глицерина и карбоновых кислот.
- Гидролиз углеводов до моносахаридов.
- Гидролиз нуклеиновых кислот до нуклеотидов.
Тест 2. Обеспечивают гликолиз:
- Ферменты пищеварительного тракта и лизосом.
- Ферменты цитоплазмы.
- Ферменты цикла Кребса.
- Ферменты дыхательной цепи.
Тест 3. В результате бескислородного окисления в клетках у животных при недостатке О 2 образуется:
- ПВК.
- Молочная кислота.
- Этиловый спирт.
- Ацетил-КоА.
Повторение. Какие ответы верны:
Тест 4. В результате бескислородного окисления в клетках у растений при недостатке О 2 образуется:
- ПВК.
- Молочная кислота.
- Этиловый спирт.
- Ацетил-КоА.
Тест 5. При гликолизе моль глюкозы образуется всего энергии:
- 200 кДж.
- 400 кДж.
- 600 кДж.
- 800 кДж.
Тест 6. Три моль глюкозы подверглось гликолизу в животных клетках при недостатке кислорода. При этом углекислого газа выделилось:
- 3 моль.
- 6 моль.
- 12 моль.
- Углекислый газ в животных клетках при гликолизе не выделяется.
Повторение. Какие ответы верны:
**Тест 7. К биологическому окислению относятся:
- Окисление вещества А в реакции: А + О 2 АО 2 .
- Дегидрирование вещества А в реакции: АН 2 + В А + ВН 2 .
- Потеря электронов ( Fe 2 + в реакции Fe 2 + Fe 3 + + е - ).
- Приобретение электронов ( Fe 3 + в реакции Fe 3 + + е - Fe 2 + ).
**Тест 8. Реакции подготовительного этапа происходят:
- В пищеварительном тракте.
- В митохондриях.
- В цитоплазме.
- В лизосомах.
Тест 9. Энергия, которая выделяется в реакциях подготовительного этапа:
- Рассеивается в форме тепла.
- Запасается в форме АТФ.
- Большая часть рассеивается в форме тепла, меньшая — запасется в форме АТФ.
- Меньшая часть рассеивается в форме тепла, большая — запасется в форме АТФ.
Повторение. Какие ответы верны:
Тест 10. Энергия, которая выделяется в реакциях гликолиза:
- Рассеивается в форме тепла.
- Запасается в форме АТФ.
- 120 кДж рассеивается в форме тепла, 80 кДж — запасается в форме АТФ.
- 80 кДж рассеивается в форме тепла, 120 кДж — запасается в форме АТФ.
Дайте краткие ответы на вопросы:
- Что такое ассимиляция (определение)?
- Что такое диссимиляция (определение)?
- Какие организмы называются автотрофами (определение)?
- На какие группы делятся автотрофы?
- Какие организмы называются гетеротрофами?
- Какие три этапа энергетического обмена вам известны?
- Продукты гидролиза белков, жиров, углеводов, нуклеиновых кислот на подготовительном этапе?
Что такое ассимиляция (определение)?
Что такое диссимиляция (определение)?
Какие организмы называются автотрофами (определение)?
На какие группы делятся автотрофы?
Какие организмы называются гетеротрофами?
Какие три этапа энергетического обмена вам известны?
Продукты гидролиза белков, жиров, углеводов, нуклеиновых кислот на подготовительном этапе?
Что происходит с энергией, выделяющейся на подготовительном этапе энергообмена?
Где расположены ферменты бескислородного этапа энергообмена?
Какие продукты и сколько энергии образуется при гликолизе?
- Что происходит с энергией, выделяющейся на подготовительном этапе энергообмена?
- Где расположены ферменты бескислородного этапа энергообмена?
- Какие продукты и сколько энергии образуется при гликолизе?
Что такое ассимиляция (определение)?
Что такое диссимиляция (определение)?
Какие организмы называются автотрофами (определение)?
На какие группы делятся автотрофы?
Какие организмы называются гетеротрофами?
Какие три этапа энергетического обмена вам известны?
Продукты гидролиза белков, жиров, углеводов, нуклеиновых кислот на подготовительном этапе?
Что происходит с энергией, выделяющейся на подготовительном этапе энергообмена?
Где расположены ферменты бескислородного этапа энергообмена?
Какие продукты и сколько энергии образуется при гликолизе?