Ускорителями заряженных частиц называются устройства, в которых под действием электрических и магнитных полей создаются и управляются пучки высокоэнергетичных заряженных частиц (электронов, протонов, мезонов и т.д.). Любой ускоритель характеризуется типом ускоряемых частиц, разбросом частиц по энергиям и интенсивностью пучка.
Ускорители подразделяются на непрерывные (равномерный во времени пучок) и импульсные (в них частицы ускоряются порциями – импульсами). Последние характеризуются длительностью импульса.
По форме траектории и механизму ускорения частиц ускорители делятся на линейные, циклические и индукционные.
В линейных ускорителях траектории движения частиц близки к прямым линиям, в циклических и индукционных траекториями частиц являются окружности или спирали.
1. Линейный ускоритель. Ускорение частиц осуществляется электростатическим полем, создаваемым, например, высоковольтным генератором Ван-де-Граафа. Заряженная частица проходит поле однократно: заряд q, проходя разность потенциалов φ1 φ2 , приобретает кинетическую энергию (φ φ ) K q 1 2 .
Таким способом частицы ускоряются до ≈ 10 МэВ. Их дальнейшее ускорение с помощью источников постоянного напряжения невозможно из-за утечки зарядов, пробоев и т.д.
2. Линейный резонансный ускоритель. Ускорение заряженных частиц осуществляется переменным электрическим полем сверхвысокой частоты, синхронно изменяющимся с движением частиц. Таким способом протоны ускоряются до энергий порядка десятков мегаэлектронвольт, электроны – до десятков гигаэлектронвольт.
Циклотрон – циклический резонансный ускоритель тяжелых частиц (протонов, ионов).
Микротрон (электронный циклотрон) – циклический резонансный ускоритель, в котором, как и в циклотроне, и магнитное поле, и частота ускоряющего поля постоянны во времени, но резонансное условие в процессе ускорения всѐ же сохраняется за счѐт изменения кратно- 46 сти ускорения q. Частица обращается в микротроне в однородном магнитном поле, многократно проходя ускоряющий резонатор. В резонаторе она получает такой прирост энергии, что еѐ период обращения изменяется на величину, равную или кратную периоду ускоряющего напряжения. Причем, если частица с самого начала вошла в резонанс с ускоряющим полем, этот резонанс сохраняется, несмотря на изменение периода обращения. В микротроне действует механизм автофазировки, так что частицы, близкие к равновесной орбите, также будут ускоряться. Микротрон – ускоритель непрерывного действия, и способен давать токи порядка 100 мА, максимальная достигнутая энергия порядка 30 Мэв (Россия, Великобритания). Реализация больших энергий затруднительна из-за повышенных требований к точности магнитного поля, а существенное повышение тока ограничено электромагнитным излучением ускоряемых электронов. Для длительного сохранения резонанса магнитное поле микротрона должно быть однородным. Такое поле не обладает фокусирующими свойствами по вертикали; соответствующая фокусировка производится электрическим полем резонатора. Предлагались варианты микротронов с меняющимся по азимуту магнитным полем (секторный микротрон), но сколько-нибудь значительного развития они пока не получили.
Фазотрон (синхроциклотрон) – циклический резонансный ускоритель тяжелых заряженных частиц (например, протонов, ионов, αчастиц), в котором управляющее магнитное поле постоянно, а частота ускоряющего электрического поля медленно изменяется с периодом. Движение частиц в фазотроне, как и в циклотроне, происходит по раскручивающейся спирали. Частицы в фазотроне ускоряются до энергий примерно равных 1 ГэВ (ограничения здесь определяются размерами фазотрона, так как с ростом скорости частиц растет радиус их орбиты).
Синхротрон – циклический резонансный ускоритель ультрарелятивистских электронов, в котором управляющее магнитное поле изменяется во времени, а частота ускоряющего электрического поля постоянна.
Синхрофазотрон – циклический резонансный ускоритель тяжелых заряженных частиц (протонов, ионов), в котором объединяются свойства фазотрона и синхротрона. Здесь управляющее магнитное поле и частота ускоряющего электрического поля одновременно изменяются во времени так, чтобы радиус равновесной орбиты частиц оставался постоянным.
Бетатрон – единственный циклический ускоритель (электронов) нерезонансного типа, в котором ускорение осуществляется вихревым электрическим полем. Электродвижущая сила индукции, создаваемая переменным магнитным полем, может существовать и в отсутствие проводников.
Большой андронный коллайдер (БАК). В 2000 году физики из ЦЕРНа (европейский центр ядерных исследований), работающие на 27-километровом кольцевом Большом электрон-позитронном коллайдере LEP (Large Electron Positron Collider), обнародовали фотографии превращений элементарных частиц, которые вроде бы свидетельствовали о реальности хиггсовского бозона, однако последующие эксперименты доказали преждевременность этого вывода. В то время считалось, что масса этой частицы не превышает 96 Гэв, что лежало в пределах возможностей церновского коллайдера. В то же время теоретические расчеты показывают, что даже небольшое увеличение массы t-кварка должно весьма значительно повышать массу хиггсовского бозона. Коль скоро теперь этот кварк «потяжелел» с 175 до 178 Гэв, теоретически вычисленная масса бозона Хиггса оказывается не меньше 117 Гэв, но может составлять и 251 Гэв. Это означает, что бозон Хиггса невозможно получить ни на одном ныне действующем ускорителе, так что выводы европейских физиков и в самом деле приходится признать ошибочными. Однако не будем огорчаться – сейчас ЦЕРН строит более мощный ускоритель, LHC (Large Hadron Collider) – Большой адронный коллайдер. Его энергии должно хватить и для долгожданной поимки хиггсовского бозона – конечно, если его масса вновь не подскочит. Новый суперускоритель ЦЕРНа будет запущен в 2007 году, так что ждать осталось уже недолго.