СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Формирование и развитие функциональной математической грамотности посредством современных педагогических технологий и практико-ориентированных заданий

Категория: Математика

Нажмите, чтобы узнать подробности

«Функциональная грамотность сегодня — это базовое образование личности. Ребенку важно обладать: готовностью успешно взаимодействовать с изменяющимся окружающим миром; возможностью решать различные учебные и жизненные задачи; способностью строить социальные отношения; совокупностью рефлексивных умений, обеспечивающих оценку своей грамотности, стремление к дальнейшему образованию». 

Просмотр содержимого документа
«Формирование и развитие функциональной математической грамотности посредством современных педагогических технологий и практико-ориентированных заданий»

Формирование и развитие функциональной математической грамотности посредством современных педагогических технологий и практико-ориентированных заданий



Термин «функциональная грамотность» был предложен ЮНЕСКО в 1957 году. Тогда функциональная грамотность включала в себя умение читать и писать. С тех пор понятие изменялось и дополнялось новыми компонентами.  «Функциональная грамотность сегодня — это базовое образование личности. Ребенку важно обладать: готовностью успешно взаимодействовать с изменяющимся окружающим миром; возможностью решать различные учебные и жизненные задачи; способностью строить социальные отношения; совокупностью рефлексивных умений, обеспечивающих оценку своей грамотности, стремление к дальнейшему образованию». 

Сегодня выделяют следующие компоненты функциональной грамотности: 

– математическая грамотность;

– финансовая грамотность;

– естественнонаучная грамотность;

– глобальные компетенции;

– читательская грамотность;

– критическое мышление.

Какие есть сложности с функциональной грамотностью?

Регулярно в мире проходит оценивание функциональной грамотности школьников с помощью таких тестов, как  PISA. Традиционно Россия находится в середине рейтинга PISA: 30-37 место из 74. Причины невысоких показателей — оторванность школьных заданий от реальности и недостаточное количество материалов для подготовки.

Разработать материалы для международного тестирования непросто — они должны соответствовать ряду критериев. Например, информация должна быть новой для школьников, но не привязанной к содержанию других предметов. Задания должны проектировать жизненную ситуацию и быть доступными для детского восприятия. 

Развивать функциональную грамотность в школе нужно на протяжении всего обучения. Важно не «натаскивать» учеников на новый тип заданий, а учить работать с информацией в непривычной ситуации и применять знания для достижения цели.


Читательская грамотность школьников

Читательская грамотность включает в себя умение понимать и использовать прочитанное, соотносить информацию со своим опытом и знаниями, интерпретировать ее. Для российских школ типична проблема: современные дети мало читают, что приводит к обедненному словарному запасу, неумению правильно и четко выразить свои мысли. Если дети не умеют читать, значит, не могут работать с большим объемом информации, где есть не только информация справочного характера, но и рассуждения, логика, доказательства. Под «читательской грамотностью» понимается способность учащихся к осмыслению письменных текстов и рефлексии на них, использования их содержания для достижения собственных целей, развития знаний и возможностей для активного участия в жизни общества. При этом основными параметрами оценки читательской грамотности являются текст, ситуация и вопрос, так как только в совокупности они могут развивать умения не пересказа прочитанного, а поиска и интерпретации информации. В этом смысле полное понимание текста зависит от умения найти необходимую информацию и извлечь ее из общего контекста, сформулировать общее понимание текста и представить собственную точку зрения о содержании и форме текстового сообщения.

Для качественной интерпретации результатов выполнения тестовых вопросов международная шкала PISA-2012 была разделена на семь уровней, используемых при оценивании читательской грамотности школьников. Каждый уровень содержит целый спектр читательских умений, включающих три категории — доступ и извлечение, интеграция и интерпретация, размышление и оценка. Все эти учебные задания присутствуют во всех учебниках. При измерении читательской грамотности используются все виды текстов:

— «сплошные тексты», как правило, это художественные тексты;

— «несплошные тексты», которые содержат информационные единицы (таблицы, графики, диаграммы);

— «смешанные тексты», которые содержат вербальные и невербальные элементы;

— «составные тексты», они соединяют несколько текстов, различных не только по содержанию, но и по формату.

 Безусловно, во всех учебниках, пособиях по подготовке к ВПР и ГИА, независимо от изучаемого предмета, имеются все эти виды учебных текстов.

Читательская грамотность.

1. Обучение чтению: способность выбирать стратегию и тактику чтения в зависимости от цели чтения (гибкое чтение).

2. Развитие механизмов речи: умение делать эквивалентные замены, сжимать текст, предвидеть, предугадывать содержание текста.

3. Развитие устной и письменной речи:

— развитие орфоэпических навыков;

— работа по обогащению словарного запаса;

— развитие и совершенствование грамматического строя речи учащихся;

— развитие устной разговорной, учебно-научной, художественной речи;

— развитие письменной разговорной, учебно-научной, художественной речи.

 

 В 5-м и 6-м классах важно научить детей гибкому чтению на уроках математики. Задания к упражнениям по степени сложности могут быть разными:

  • определять главное и второстепенное в тексте задачи;

  • сопоставлять данные по тексту, соотнести их характеристики;

  • уметь формулировать вопросы по данным задачи (текста);

  • составлять задачи по схеме (рисунку), используя частичные данные;

  • вычленять новую информацию из текста и сформировать ее главную мысль по отношению к тексту;

  • развивать механизм формирования научной речи, умение грамотно выражать свои мысли;

  • формировать навыки работы с готовой информацией, работать по алгоритму (схеме) из одного источника информации.

Математическая грамотность

Сегодня на первое место в мире выходит потребность быстро реагировать на все изменения, происходящие в жизни, умение самостоятельно находить, анализировать, применять информацию. Главным становится функциональная грамотность, так как это «способность человека решать стандартные жизненные задачи в различных сферах жизни и деятельности на основе прикладных знаний». Одним из ее видов является математическая грамотность.

«Математическая грамотность – способность человека определять и понимать роль математики в мире, в котором он живет, высказывать хорошо обоснованные математические суждения и использовать математику так, чтобы удовлетворять в настоящем и будущем потребности, присущие созидательному, заинтересованному и мыслящему гражданину».

Компоненты математической грамотности:

- воспроизведение математических фактов, методов и выполнение вычислений

- установление связей и интеграции материала из разных математических тем, необходимых для решения поставленной задачи

- математические размышления, требующие обобщения и интуиции

В определении «математической грамотности» основной упор сделан не на овладение предметными умениями, а на функциональную грамотность, позволяющую свободно использовать математические знания для удовлетворения различных потребностей – как личных, так и общественных. Согласно этому основное внимание нужно уделять проверке способности обучающихся использовать математические знания в разнообразных ситуациях, требующих для своего решения различных подходов, размышлений и интуиции. Очевидно, что для этого явно необходимо иметь значительный объем математических знаний и умений, которые не сводятся к знанию математических фактов, терминологии, стандартных методов и умению выполнять стандартные действия и использовать определенные методы.

Сущность понятия «грамотности» определяется тремя признаками:

  • пониманием роли математики в реальном мире,

  • высказыванием обоснованных математических суждений,

  • использованием математики для удовлетворения потребностей человека.

Необходимо изменить приоритеты в школьном образовании, переориентироваться непрерывное самообразование, овладение новыми информационными технологиями, умение сотрудничать и работать в группах

Обучающиеся должны уметь решать любые поставленные перед ними задачи. В зависимости от сложности задания выделены три уровня математической компетентности: уровень воспроизведения, уровень установления связей, уровень рассуждений.

Первый уровень (уровень воспроизведения) — это прямое применение в знакомой ситуации известных фактов, стандартных приемов, распознавание математических объектов и свойств, выполнение стандартных процедур, применение известных алгоритмов и технических навыков, работа со стандартными, знакомыми выражениями и формулами, непосредственное выполнение вычислений.

Второй уровень (уровень установления связей) строится на репродуктивной деятельности по решению задач, которые, хотя и не являются типичными, но все же знакомы обучающимся или выходят за рамки известного лишь в очень малой степени. Содержание задачи подсказывает, материал какого раздела математики надо использовать и какие известные методы применить. Обычно в этих задачах присутствует больше требований к интерпретации решения, они предполагают установление связей между разными представлениями ситуации, описанной в задаче, или установление связей между данными в условии задач.

Третий уровень (уровень рассуждений) строится как развитие предыдущего уровня. Для решения задач этого уровня требуются определенная интуиция, размышления и творчество в выборе математического инструментария, интегрирование знаний из разных разделов курса математики, самостоятельная разработка алгоритма действий. Задания, как правило, включают больше данных, от обучающихся часто требуется найти закономерность, провести обобщение и объяснить или обосновать полученные результаты.

Ученики должны активно принимать участие на всех этапах учебного процесса: формулировать свои собственные гипотезы и вопросы, консультировать друг друга, ставить цели для себя, отслеживать полученные результаты.

Прочное усвоение материала достигается посредством учебного процесса, в центре которого находится ученик, поэтому на протяжении всех уроков необходимо:

• Создание той среды, которая позволяет личности чувствовать себя свободно и безопасно в процессе обучения.
• Формирование саморегулирования, что обеспечивает самонаправленность, самостоятельное определение проблемы и цели, самостоятельный выбор стратегий для достижения целей.
• Развитие критического мышления, что способствует осмыслению, оценки, анализу и синтезу информации, которые послужат основанием к действию.
• Оценивание обучения, развития собственного понимания и определения обучения, для дальнейшего совершенствования.

Развивать математическую грамотность надо постепенно. Регулярно включать в ход урока задания на «изменение и зависимости», «пространство и форма», «неопределенность», «количественные рассуждения»

Эти задания можно использовать по усмотрению учителя:

  • Как игровой момент на уроке;

  • Как проблемный элемент в начале урока;

  • Как задание – «толчок» к созданию гипотезы для исследовательского проекта;

  • Как задание для смены деятельности на уроке;

  • Как модель реальной жизненной ситуации, иллюстрирующей необходимость изучения какого либо понятия на уроке;

  • Как задание, устанавливающее межпредметные связи в процессе обучения;

  • Некоторые задания заставят сформулировать свою точку зрения и найти аргументы для её защиты;

  • Можно собрать задания одного типа и провести урок в соответветствии с какой то образовательной технологией;

  • Можно все задачи объединить в группы и создать свой элективный курс по развитию математического мышления;

  • Задания такого типа можно включать в школьные олимпиады, математические викторины;

  • Задачи на развитие математического мышления могут стать основой для внеклассного мероприятия в рамках декады математики.

Для выполнения заданий требуется относительно небольшой объем знаний и умений, которые необходимы для математически грамотного современного человека.

К ним отнесены:

  • пространственные представления;

  • пространственное воображение;

  • свойства пространственных фигур;

  • умение читать и интерпретировать количественную информацию, представленную в различной форме (в форме таблиц, диаграмм, графиков реальных зависимостей), характерную для средств массовой информации;

  • умение работать с формулами;

  • знаковые и числовые последовательности;

  • нахождение периметра и площадей нестандартных фигур;

  • действия с процентами;

  • использование масштаба;

  • использование статистических показателей для характеристики реальных явлений и процессов;

  • умение выполнять действия с различными единицами измерения (длины, массы, времени, скорости) и др.

Можно применять полученные знания и умения на уроках к решению проблем, возникающих в повседневной практике

Обучающиеся часто задаются вопросами: зачем им математика, как она пригодится им в дальнейшем, как знания формул и теорем помогут им в повседневной жизни? Ответить на эти вопросы, а также показать ученикам связь математики с их будущей профессией, изменить их эмоционально-чувственное отношение к предмету позволяют задачи прикладного характера.

Например:

Решение практико-ориентированных задач на уроках математики должно иметь конкретные цели:

  1. Научиться решать задачи, с которыми каждый из нас может столкнуться в повседневной жизни.

  2. Опровергнуть мнение, что не всем нужно учиться математике.

  3. Доказать, что математика нужна всем, чем бы человек не занимался, какой бы профессией не овладевал, где бы не учился.

  4. Готовиться к Единому Государственному Экзамену, в который входят практико-ориентированные задачи.

Одной из основных задач, стоящих перед школой, является выяснение многообразных применений школьного курса математики при изучении смежных предметов, в технике, экономике.

Пример задания для формирования математической грамотности школьников


Практико-ориентированные задачи

Я хочу представить вашему вниманию три группы практико-ориентированных задач.

1 группа-это задачи профориентационного направления

 Профессия

Задачи

Домохозяйка


1.  Мама решила приготовить салат из огурцов, помидоров и редиски. Вся масса салата должна составить 400 г. Сколько нужно положить помидоров, если масса огурцов составляет 150 г., а масса редиски в 2 раза меньше массы огурцов?

2. Хозяйка собрала 17 кг яблок. Сколько получится свежевыжатого сока, если сок составляет 80% от массы всех яблок?

3. Купили 15 кг груш. На компот решили истратить 40% все груш, а остальное пошло на варенье. Сколько кг сахара нужно купить для варенья, если на 1 кг свежих груш нужно 800 г. сахара?

Повар-кондитер

1. Для приготовления летнего салата для семьи нужно 500г помидоров по цене 25 руб. за 1 кг, 300 г огурцов по цене 40 руб. , 30 г зеленого лука по цене 6 руб., 50 г сметаны по цене 50 руб. за баночку массой  200 г. Какова  будет стоимость салата?

2. На шоколадную фабрику привезли 2 ящика какао бобов. В первом ящике было в 10,5 раз  больше какао бобов чем во втором. После того как из первого ящика взяли 16 кг, а во второй добавили 22 кг, какао бобов стало поровну. Сколько какао бобов было первоначально в каждом ящике.

Продавец

1. В магазин привезли 400 кг апельсинов. В первый день продали 15%, а во второй день 0,5 оставшихся. Сколько осталось апельсинов в магазине?

2. В школьный буфет привезли пирожки. Ученики старших классов скупили 120 пирожков, что составило 48% всего количества. Сколько всего привезли пирожков? Сколько пирожков купили ученики младших классов, если 17 пирожков остались не проданными?



Водитель

Водителю выдали американский автомобиль, на спидометре которого скорость измеряется в милях в час. Какова скорость автомобиля в километрах в час, если спидометр показывает 26 мили/час?  Ответ округлить до целого числа. Американская миля равна 1609 м.

Воспитатель

В летнем лагере 245 детей и 29 воспитателей. В автобус помещается не более 46 пассажиров. Сколько автобусов требуется, чтобы перевезти всех из лагеря в город?

2 группа - геометрические задачи, связанные с жизнью, с практической деятельностью человека.

1. На берегу реки требуется построить водонапорную башню для снабжения водой двух сел так, чтобы общая длина труб от водонапорной башни до обоих сел была наименьшей.

3 группа – задачи семейно-практического содержания. Например, «один день из жизни семьи»

  1. Больному прописано лекарство, которое нужно пить по 0,5 г 3 раза в день в течение 8 дней. В одной упаковке 10 таблеток лекарства по 0,25 г. Какого наименьшего количества упаковок хватит на весь курс лечения?

  2. Для ремонта квартиры купили 42 рулона обоев. Сколько пачек обойного клея нужно купить, если одна пачка клея рассчитана на 8 рулонов?

Практико-ориентированные задачи использую на различных этапах урока.

Сегодня учитель перестал быть для ученика «единственным источником информации». Вовлечь каждого ученика в процесс обучения, суметь выслушать его, сделать его своим помощником или ассистентом, посмотреть глазами самого ребёнка на беспокоящую его проблему – вот задача для современного учителя.

Новое время потребовало от учителя освоить современные активные технологии и активно их применить на своих уроках. Современный ученик прекрасно владеет информационными технологиями, легко разбирается в технике. Поэтому нам всем нужны новые средства и подходы для обучения и развития умения размышлять, понимать, анализировать, т.е. для формирования практических навыков у учеников. Наша задача направить их знания и умения в нужном направлении, подсказать, как добыть те или иные знания, заинтересовать, добиться, чтобы их глаза зажглись интересом к познанию. «Поэтому обучающиеся должны учиться тому, как адаптировать свои знания к любой ситуации и иметь возможность решать любые сложные задачи, с которыми им возможно, придётся столкнуться в будущем».

«Скажи мне - и я забуду. Покажи мне - и я запомню. Дай мне действовать самому - и я научусь». Эти слова мудрого Конфуция современны как никогда. Конечно, быстрее и легче показать, объяснить, чем позволить ученикам самим открывать знания и способы действий. Самостоятельно ставить цели, анализировать, сопоставлять, оценивать, а главное - не бояться ошибаться в поисках нового пути. Именно этому нужно учить в школе.


«Красоту математики можно увидеть глазами, можно почувствовать сердцем, но объять ее можно только умом»

Шалва Александрович Амонашвили.