СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Геометрия 11 класс. (продолжение) РЕШЕНИЕ ЗАДАЧ: Пирамида. Усеченная пирамида.

Категория: Математика

Нажмите, чтобы узнать подробности

Геометрия 11 класс. (продолжение)

РЕШЕНИЕ ЗАДАЧ: Пирамида. Усеченная пирамида.

Просмотр содержимого документа
«Геометрия 11 класс. (продолжение) РЕШЕНИЕ ЗАДАЧ: Пирамида. Усеченная пирамида.»

УРОК

Геометрия 11 класс. (продолжение)

РЕШЕНИЕ ЗАДАЧ: Пирамида. Усеченная пирамида.

Задача № 1. В основании пирамиды лежит прямоугольный треугольник. Две грани, содержащие катеты, перпендикулярны к плоскости основания. Покажите углы между боковыми ребрами и плоскостью основания. Будут ли они равны если треугольник равнобедренный.

Задача № 2. В основании пирамиды лежит равнобедренный треугольник. Боковые ребра наклонены к плоскости основания под одним углом. Постройте высоту пирамиды и углы между боковыми ребрами и плоскостью основания (построение обосновать)





Задача № 3. Пирамида произвольная. Постройте углы между боковыми ребрами и плоскостью основания.

Задача № 4. В основании пирамиды лежит прямоугольный треугольник. Каждое боковое ребро образует с основанием один и тот же угол. Выполнить рисунок и обосновать построение. Найти объем если высота пирамиды равна 7 см. а угол между боковым ребром и плоскостью основания равен 60 0 .

ВЫВОД: Высота пирамиды проектируется в центр описанной окружности если: боковые ребра равны; боковые ребра наклонены к плоскости основания под одним углом; пирамида правильная.

Домашнее задание. В правильной пирамиде (треугольная, четырехугольная, шестиугольная) построить угол между боковой гранью и плоскостью основания. Построение обосновать.