СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Градусная мера дуги окружности

Категория: Математика

Нажмите, чтобы узнать подробности

 На данном уроке вводится понятие градусной меры дуги окружности, центрального угла,чтение чертежа, овладеть умениями решать геометрические задачи. Это способствует развивитию навыков исследовательской деятельности,работа в группах, развивается грамотная математическая речь, логическое мышление,активности на уроке и  содействовать развитию осуществлять самооценку своей учебной деятельности. Данный урок создает у учащихся положительную мотивацию к уроку геометрии ,путем вовлечения каждого ученика в активную деятельность.

Просмотр содержимого документа
«Градусная мера дуги окружности»

Открытый урок по геометрии 8 класс.

Тема: «Градусная мера дуги окружности».

Цель урока:

  • Образовательная: ввести понятия градусной меры дуги окружности, центрального угла; формировать умение решать задачи на нахождение градусной меры дуги окружности, центрального угла; учить читать чертеж.

  • Развивающая: развивать навыки исследовательской деятельности (выдвижение гипотез, анализ, сравнение и обобщение полученных результатов); навыки работы в группах, грамотную математическую речь, сообразительность, внимательность, логическое мышление, память, активность на уроке; содействовать развитию умений осуществлять самооценку учебной деятельности.

  • Воспитательная: создать у учащихся положительную мотивацию к уроку геометрии, путем вовлечения каждого ученика в активную деятельность; воспитывать потребность оценивать свою деятельность и работу товарищей; помочь осознать ценность совместной деятельности.


Цели ученика: освоить понятия: градусная мера дуги окружности, центральный угол; овладеть умением решать задачи на нахождение градусной меры дуги окружности, центрального угла.


Универсальные учебные действия (УУД):

  • регулятивные: постановка учебной задачи на основе соотнесения того, что уже известно и усвоено и того, что неизвестно;

  • коммуникативные: построение речевых высказываний;

  • познавательные: анализ объектов с выделением существенных и несущественных признаков;

  • личностные: самооценка.


Тип урока: урок изучения нового материала.

Дидактической оснащение: учебник, компьютер, проектор, экран, указка, мел, карточки, лист самооценки.

Ход урока.

  1. Организационный момент урока.

- Хочется начать урок с народной мудрости (слайд 1) «Ум без догадки – гроша не стоит», так как при решении геометрических задач нужна смекалка, умение рассуждать, анализировать, а это невозможно без знаний и вдохновения. (слайд 2) К. Вейерштрасс (немецкий математик) сказал по этому поводу «Математик, который не является в известной мере поэтом, никогда не будет настоящим математиком».

- Вдохновения вам на протяжении всего урока.

II. Актуализация опорных знаний и постановка цели.

- Решите ребус, разгадав его, вы узнаете, о какой фигуре мы сейчас поговорим. В этом ребусе зашифровано название фигуры, у которой нет ни начала, ни конца, зато есть длина.

(слайд 3)



(окружность)



- Посмотрите на чертеж.

А С (слайд 4) - Назовите радиусы окружности? (ОА, ОС, ОВ)

- Сформулируйте определение радиуса окружности?

- Сколько радиусов можно провести в окружности?

- При построении этих элементов окружности у нас

получились углы. Назовите их. (AOC, AOB, COB).

D - Вспомните, что вы знаете о паре углов AOC и BOA?

(они смежные, их сумма равна 1800).

- Как называется угол BOC? (развернутый, градусная

В мера его равна 1800).


- Что является сторонами этого угла? А вершина где расположена? (стороны этих углов – радиусы окружности, а вершины располагаются в центре окружности).

- Какой еще есть угол на чертеже? (угол CBD).

- Он какой? (острый).

- Чем являются стороны этого угла? (диаметр и хорда).

- Где расположена вершина угла? (на окружности).

- Сформулируйте определение диаметра окружности? (диаметр – хорда, проходящая через центр окружности).

- Сформулируйте определение хорды? (хорда – отрезок, соединяющий две точки окружности).

- Попробуйте разделить все эти углы на две группы по каким-то общим элементам.

Углы в окружности (слайд 5)





AOC CBD

AOB

BOC

- По какому признаку вы разделили эти углы на две группы? (у всех углов I группы вершиной угла является центр окружности, у угла II группы вершина угла лежит на окружности).

- Как вы думаете, как называются эти углы, вершины которых – центр окружности? (центральные углы).

- Как вы думаете, о чем мы будем говорить на уроке? Попробуйте сформулировать тему урока.

- Сегодня на уроке мы познакомимся с понятием центрального угла и градусной мерой дуги окружности.

- Тема урока: «Градусная мера дуги окружности». (слайд 6)

- Откройте тетради, запишите число, классная работа и тему урока (запись на доске).

III. Изучение нового материала.

- Напомним определение окружности. Внимание, это определение будет дано ошибочное. Задача – найти ошибку.

- Итак, вот это определение: (слайд 7)

Окружностью называют множество точек, равноудаленных от одной точки – от центра.

- Где ошибка? (пропущено одно слово множество «всех» точек, равноудаленных от одной точки окружности).

- Например, вершины квадрата – это множество точек, равноудаленных от центра квадрата, но это не есть окружность.


(слайд 8) - Окружность – это множество всех точек,

равноудаленных от центра.




- Важный элемент окружности.

- Узнайте его, решив ребус.

, ,

(дуга) (слайд 9)





- Дуга – это часть окружности, расположенная между двумя точками этой окружности.

(слайд 10)





L

А B




М

Имеем:

- ALB – это дуга окружности.

- центральный угол.

- т. О – центр окружности.

- Как вы думаете, какой угол называют центральным углом? (угол с вершиной в центре окружности центральным углом этой окружности).

- Имеем дугу и соответствующий центральный угол.

- Сколько дуг на рисунке? (на рисунке две дуги).

- Чтобы различать эти дуги, на каждой из них отмечают промежуточную точку. Когда ясно о какой из двух дуг идет речь, используется обозначение без промежуточной точки.

- Обозначают дуги так: , , . (слайд 11)

- В чем измеряются дуги окружности?

- Отгадайте шараду. Подсказка: первая часть – природное явление, вторая – есть у кошки.


(слайд 12)

(градусы)





- Рассмотрим, что такое градусная мера дуги окружности. (слайд 13)

- Дуга ALB – дуга не больше полуокружности.

- Дуга AMB – дуга, больше полуокружности.

- Какая дуга называется полуокружностью? (дуга называется полуокружностью, если, отрезок, соединяющий ее концы, является диаметром окружности).

- Так вот: Градусной мерой дуги ALB называется градусная мера соответствующего центрального угла AOB. (слайд 14)

- Получаем. Вот сколько градусов в этом угле, столько же градусов и в этой дуге.

- Если дуга больше полуокружности, то градусная мера этой дуги: . (слайд 15)

- Давайте рассмотрим одну дугу и второю дугу, которые вместе составляют всю окружность. Получим, градусная мера первой дуги – это угол AOB.

Градусная мера второй дуги – это .


- В результате получим 3600. Значит, вся окружность измеряется числом 3600.

- Градусная мера окружности – это 3600.

- Как вы думаете, чему равна градусная мера полуокружности? (градусная мера полуокружности равна градусной мере развернутого угла - 1800).

IV. Физминутка. (слайд 16 – 25)

- Отдохнем немного. Сделаем физминутку для глаз.

V. Фронтальная работа. (слайд 26)

- Рассмотрим конкретные примеры.

- Дано: окружность, диаметр, перпендикулярный радиус, OM – радиус, такой, что угол СОМ = 450. Значит и другой угол AOM = 450.



С

.

M L



А В





  1. - Что можете сказать о дуге ACB? (дуга ACB – это полуокружность).

- Какова градусная мера дуги ACB? (дуга ACB = 1800).

2) - Следующая дуга BLC. Как ее найти? (дуга BLC соответствует центральному углу COB).

- Какой это угол? (прямой).

- Чему равна градусная мера дуги BLC? (градусная мера дуги BLC равна градусной мере угла BOC = 900).

3) Градусная мера дуги BC чему равна? (дуга MC = 450).

4) Как найти градусную меру дуги BCM? Из скольких дуг она состоит? (эта дуга состоит из двух дуг BLC и CM. Значит, дуга BCM = 900 + 450 = 1350).

5) Наконец, рассмотрим градусную меру дуги MAB.

- Эта дуга больше или меньше полуокружности? (больше полуокружности).

- Как найдем градусную меру дуги MAB? ().

- Мы рассмотрели некоторые примеры по вычислению градусной меры дуги окружности.

- Теперь выполним работу самостоятельно.

VI. Самостоятельная работа. (слайд 27)

- У каждого на столе есть карточка с заданием.

- Вам предлагается решить карточку с готовыми чертежами. Решение записать в тетрадь.

Найти градусную меру и ?

А В





L

Найти градусную меру и? D



L



C

















































- Проверка решений задачи (по одному человеку). Оценки.

VII. Работа в парах. (слайд 28)

- Выполним задание в парах. Но сначала послушайте внимательно задание. Решив задачи, вы должны сопоставить ответы с буквами, расположив числа по возрастанию. У вас получится слово, и вы узнаете, какой праздник празднует Россия 20 марта.

1 - ? 2 А - ? 3 А - ? 4 - ?

А

В А L



В В В










А Т С Е



5 - ? 6 - ? 7 - ?

А L C В С



L A А



В L












С Ч Ь

1 – 1300 –А, 2 – 1800 – Т, 3 – 900 – С, 4 – 3300 – Е, 5 – 1350 – С, 6 – 1080 – Ч, 7 – 2600 – Ь.

СЧАСТЬЕ.

- Какое слово получилось? (счастье). (слайд 29)

- Новый праздник – День счастья – мир отмечает 20 марта. Ведь 20 марта – это день весеннего солнцестояния, уникального в природе явления, когда день точно равен ночи. Таким образом, День весеннего равноденствия послужил неким символом счастья, на которое в равной степени имеет право каждый житель Земли. Кроме того, во многих азиатских странах 20 марта отмечают Новый год.

VIII. Итог урока (рефлексия, самооценка). (слайд 30)

- Ответим на вопросы и узнаем, что вам дал сегодняшний урок геометрии.

Сегодня я узнал…

Было интересно…

Было трудно…

Я научился…

У меня получилось …

Урок дал мне для жизни…

- А сейчас я предлагаю проанализировать свою работу. У вас на столах есть карта самооценки. Подчеркните фразы, характеризующие вашу работу на уроке.

Рефлексия. (слайд 31)

  1. Я считаю, что занятие было… интересным, скучным.

  2. Я научился… многому, малому.

  3. Я думаю, что слушал других… внимательно, невнимательно.

  4. Я принимал участие в дискуссии… часто, редко.

  5. Результатами своей работы на уроке я… доволен, не доволен.

- Объявление оценок за работу на уроке.

- Я надеюсь, что сегодняшний урок прошел для вас с пользой. Мы узнали, что такое центральный угол окружности, что такое градусная мера дуги окружности. На следующем уроке узнаем, что такое вписанный угол и теорему о нем.

- Мы с вами хорошо потрудились, спасибо вам за работу.

IX. Домашнее задание. (слайд 32).

- Запишите домашнее задание.

п. 70, № 650 (а, б), №649, стр. 173.

Рабочая тетрадь № 85, № 86, стр. 40 – 41.

(слайд 33) – Урок закончен. До свидания.