СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

История развития геометрии. 15 интересных фактов

Категория: Математика

Нажмите, чтобы узнать подробности

Просмотр содержимого документа
«История развития геометрии. 15 интересных фактов»

Из истории возникновения геометрии  15 интересных фактов

Из истории возникновения геометрии

15 интересных фактов

С геометрией мы сталкиваемся ежесекундно, не замечая этого. Размеры и расстояния, формы и траектории движения — всё это геометрия. Значение числа π знают все. И все знают, что самый короткий путь через прямоугольный участок лежит по диагонали. Но для того, чтобы сформулировать это знание, человечеству понадобились тысячелетия. Геометрия, как и другие науки, развивалась неравномерно. На смену резкому всплеску в Древней Греции пришёл застой Древнего Рима, который сменился Тёмными веками. Новому всплеску в Средневековье пришёл на смену настоящий взрыв 19 — 20 веков. Из прикладной науки геометрия превратилась в область высоких знаний, и её развитие продолжается. А начиналось всё с подсчёта налогов и пирамид…

С геометрией мы сталкиваемся ежесекундно, не замечая этого. Размеры и расстояния, формы и траектории движения — всё это геометрия. Значение числа π знают все. И все знают, что самый короткий путь через прямоугольный участок лежит по диагонали. Но для того, чтобы сформулировать это знание, человечеству понадобились тысячелетия. Геометрия, как и другие науки, развивалась неравномерно. На смену резкому всплеску в Древней Греции пришёл застой Древнего Рима, который сменился Тёмными веками. Новому всплеску в Средневековье пришёл на смену настоящий взрыв 19 — 20 веков. Из прикладной науки геометрия превратилась в область высоких знаний, и её развитие продолжается. А начиналось всё с подсчёта налогов и пирамид…

Скорее всего, первые геометрические знания были выработаны древними египтянами. Они селились на плодородных заливаемых Нилом почвах. Налоги платили от имевшейся в распоряжении земли, а для этого нужно вычислять её площадь. Площадь квадрата и прямоугольника научились считать эмпирически, исходя из подобных фигур меньшего размера. А круг принимали за квадрат, стороны которого равны 8/9 диаметра. Число π при этом составляло примерно 3,16 — вполне приличная точность.
  • Скорее всего, первые геометрические знания были выработаны древними египтянами. Они селились на плодородных заливаемых Нилом почвах. Налоги платили от имевшейся в распоряжении земли, а для этого нужно вычислять её площадь. Площадь квадрата и прямоугольника научились считать эмпирически, исходя из подобных фигур меньшего размера. А круг принимали за квадрат, стороны которого равны 8/9 диаметра. Число π при этом составляло примерно 3,16 — вполне приличная точность.
2. Занимавшихся геометрией строительства египтян называли гарпедонаптами (от слова «верёвка»). Самостоятельно они работать не могли — требовались рабы-помощники, так как для разметки поверхностей нужно было растягивать верёвки разной длины. 3. Математическим аппаратом для решения геометрических задач первыми воспользовались вавилоняне. Они уже знали теорему, которую потом назовут Теоремой Пифагора. Все задачи вавилоняне записывали словами, отчего те получались очень громоздкими (ведь даже знак «+» появился только в конце 15-го века). И, тем не менее, вавилонская геометрия работала.

2. Занимавшихся геометрией строительства египтян называли гарпедонаптами (от слова «верёвка»). Самостоятельно они работать не могли — требовались рабы-помощники, так как для разметки поверхностей нужно было растягивать верёвки разной длины.

3. Математическим аппаратом для решения геометрических задач первыми воспользовались вавилоняне. Они уже знали теорему, которую потом назовут Теоремой Пифагора. Все задачи вавилоняне записывали словами, отчего те получались очень громоздкими (ведь даже знак «+» появился только в конце 15-го века). И, тем не менее, вавилонская геометрия работала.

4. Систематизировал скудные тогда геометрические знания Фалес Милетский. Египтяне построили пирамиды, но не знали их высоты, а Фалес смог её измерить. Ещё до Евклида он доказал первые геометрические теоремы. Но, может быть, главным вкладом Фалеса в геометрию стало общение с юным Пифагором. Этот человек уже в старости повторял песнь о своей встрече с Фалесом и её значении для Пифагора. А ещё один ученик Фалеса по имени Анаксимандр начертил первую карту мира.

4. Систематизировал скудные тогда геометрические знания Фалес Милетский. Египтяне построили пирамиды, но не знали их высоты, а Фалес смог её измерить. Ещё до Евклида он доказал первые геометрические теоремы. Но, может быть, главным вкладом Фалеса в геометрию стало общение с юным Пифагором.

Этот человек уже в старости повторял песнь о своей встрече с Фалесом и её значении для Пифагора. А ещё один ученик Фалеса по имени Анаксимандр начертил первую карту мира.

5. Когда Пифагор доказал свою теорему, надстроив прямоугольный треугольник квадратами по его сторонам, его шок и потрясение учеников были так велики, что ученики решили — мир уже познан, осталось только объяснить его числами. Пифагор создал много нумерологических теорий, не имеющих отношения ни к науке, ни к реальной жизни.  6. Решая задачу нахождения длины диагонали квадрата со стороной 1, Пифагор и его ученики поняли, что конечным числом эту длину выразить не удастся. Однако авторитет Пифагора был так силён, что он запретил ученикам разглашать этот факт. Гиппас не послушался учителя и был убит кем-то из других последователей Пифагора.

5. Когда Пифагор доказал свою теорему, надстроив прямоугольный треугольник квадратами по его сторонам, его шок и потрясение учеников были так велики, что ученики решили — мир уже познан, осталось только объяснить его числами.

Пифагор создал много нумерологических теорий, не имеющих отношения ни к науке, ни к реальной жизни.

6. Решая задачу нахождения длины диагонали квадрата со стороной 1, Пифагор и его ученики поняли, что конечным числом эту длину выразить не удастся. Однако авторитет Пифагора был так силён, что он запретил ученикам разглашать этот факт. Гиппас не послушался учителя и был убит кем-то из других последователей Пифагора.

7. Важнейший вклад в геометрию внёс Евклид. Он первым ввёл простые, понятные и однозначные термины. Евклид определил незыблемые постулаты геометрии (мы их называем аксиомами) и начал логически выводить все остальные положения науки, базируясь на этих постулатах. Книга (набор папирусов) Евклида «Начала»— это Библия современной геометрии. Всего он доказал 465 теорем. 8. Используя теоремы Евклида, работавший в Александрии Эратосфен первым вычислил длину окружности Земли. Основываясь на разнице в высоте тени, отбрасываемой палкой в полдень в Александрии и Сиене (не итальянской, а египетской, теперь это город Асуан), пешеходном измерении расстояния между этими городами. Эратосфен получил результат, всего на 4% отличающийся от нынешних измерений.

7. Важнейший вклад в геометрию внёс Евклид. Он первым ввёл простые, понятные и однозначные термины. Евклид определил незыблемые постулаты геометрии (мы их называем аксиомами) и начал логически выводить все остальные положения науки, базируясь на этих постулатах. Книга (набор папирусов) Евклида «Начала»— это Библия современной геометрии. Всего он доказал 465 теорем.

8. Используя теоремы Евклида, работавший в Александрии Эратосфен первым вычислил длину окружности Земли. Основываясь на разнице в высоте тени, отбрасываемой палкой в полдень в Александрии и Сиене (не итальянской, а египетской, теперь это город Асуан), пешеходном измерении расстояния между этими городами. Эратосфен получил результат, всего на 4% отличающийся от нынешних измерений.

9. Архимед , ученый древней Греции, которому Александрия была не чужда, хоть он и родился в Сиракузах, изобрёл немало механических устройств, но своим главным достижением считал вычисление объёмов конуса и шара, вписанных в цилиндр. Объём конуса составляет одну треть от объёма цилиндра, а объём шара — две трети. Смерть Архимеда. «Отойди, ты закрываешь мне Солнце…»

9. Архимед , ученый древней Греции, которому Александрия была не чужда, хоть он и родился в Сиракузах, изобрёл немало механических устройств, но своим главным достижением считал вычисление объёмов конуса и шара, вписанных в цилиндр. Объём конуса составляет одну треть от объёма цилиндра, а объём шара — две трети.

Смерть Архимеда.

«Отойди, ты закрываешь мне Солнце…»

10. Как ни странно, но за тысячелетие римского господства геометрия, при всём расцвете наук и искусств в Древнем Риме, не было доказано ни одной новой теоремы. В историю вошёл лишь Флавий Боэций, пытавшийся составить нечто вроде облегчённой, да ещё и изрядно перевранной, версии «Начал» для школьников. 11. Тёмные века, наступившие после краха Римской империи, затронули и геометрию. Мысль как бы замерла на долгие сотни лет. В 13-м веке Аделард Бартский впервые перевёл «Начала» на латынь.

10. Как ни странно, но за тысячелетие римского господства геометрия, при всём расцвете наук и искусств в Древнем Риме, не было доказано ни одной новой теоремы. В историю вошёл лишь Флавий Боэций, пытавшийся составить нечто вроде облегчённой, да ещё и изрядно перевранной, версии «Начал» для школьников.

11. Тёмные века, наступившие после краха Римской империи, затронули и геометрию. Мысль как бы замерла на долгие сотни лет. В 13-м веке Аделард Бартский впервые перевёл «Начала» на латынь.

А ещё сто лет спустя Леонардо Фибоначчи привёз в Европу арабские цифры.   12. Первым создавать описания пространства на языке чисел начал в 17-м веке француз Рене Декарт. Он же применил систему координат (её знал ещё Птолемей во 2-м веке) не только к картам, а ко всем фигурам на плоскости и создал описывающие простые фигуры уравнения. Открытия Декарта в геометрии позволили ему сделать ряд открытий и в физике. Опасаясь гонений церкви, он до 40 лет не опубликовал ни одной работы. Оказалось, правильно делал — его работу с длинным названием, которую чаще всего именуют «Рассуждение о методе», критиковали не только церковники, но и коллеги-математики. Время доказало правоту Декарта.

А ещё сто лет спустя Леонардо Фибоначчи привёз в Европу арабские цифры.

12. Первым создавать описания пространства на языке чисел начал в 17-м веке француз Рене Декарт. Он же применил систему координат (её знал ещё Птолемей во 2-м веке) не только к картам, а ко всем фигурам на плоскости и создал описывающие простые фигуры уравнения. Открытия Декарта в геометрии позволили ему сделать ряд открытий и в физике. Опасаясь гонений церкви, он до 40 лет

не опубликовал ни одной работы. Оказалось, правильно делал — его работу с длинным названием, которую чаще всего именуют «Рассуждение о методе», критиковали не только церковники, но и коллеги-математики. Время доказало правоту Декарта.

13. Отцом неевклидовой геометрии стал Карл Гаусс . Ещё мальчиком он самостоятельно выучился читать и писать, и однажды поразил отца, поправив его бухгалтерские расчёты. В начале 19-го века он написал ряд работ об искривлённом пространстве, но не публиковал их. Теперь учёные боялись не костра инквизиции, а философов. В то время мир млел от «Критики чистого разума» Канта, в которой автор призывал учёных отказаться от строгих формул и положиться на интуицию.

13. Отцом неевклидовой геометрии стал Карл Гаусс . Ещё мальчиком он самостоятельно выучился читать и писать, и однажды поразил отца, поправив его бухгалтерские расчёты. В начале 19-го века он написал ряд работ об искривлённом пространстве, но не публиковал их. Теперь учёные боялись не костра инквизиции, а философов. В то время мир млел от «Критики чистого разума» Канта, в которой автор призывал учёных отказаться от строгих формул и положиться на интуицию.

14. Тем временем Янош Бойяи (венгерский математик) и Николай Лобачевский параллельно также разработали фрагменты теории неевклидового пространства. Бойяи также отправил свою работу в стол, лишь написав об открытии друзьям. Лобачевский в 1830 году напечатал свою работу в журнале «Казанский вестник». Лишь в 1860-х годах последователям пришлось восстанавливать хронологию работ всей троицы. Тогда-то и выяснилось, что Гаусс, Бойяи и Лобачевский работали параллельно, никто ни у кого ничего не воровал, а первым всё же был Гаусс.

14. Тем временем Янош Бойяи (венгерский математик) и Николай Лобачевский параллельно также разработали фрагменты теории неевклидового пространства. Бойяи также отправил свою работу в стол, лишь написав об открытии друзьям.

Лобачевский в 1830 году напечатал свою работу в журнале «Казанский вестник». Лишь в 1860-х годах последователям пришлось восстанавливать хронологию работ всей троицы. Тогда-то и выяснилось, что Гаусс, Бойяи и Лобачевский работали параллельно, никто ни у кого ничего не воровал, а первым всё же был Гаусс.

15. С точки зрения повседневной жизни обилие геометрий, созданных после Гаусса, выглядит игрой в науку. Однако это далеко не так. Неевклидовы геометрии помогают решить массу задач в математике, физике и астрономии. Над входом в школу Платона, знаменитого древнегреческого мудреца, учёного и философа, было написано  “ Да не войдёт сюда тот, кто не знает геометрии”.

15. С точки зрения повседневной жизни обилие геометрий, созданных после Гаусса, выглядит игрой в науку. Однако это далеко не так. Неевклидовы геометрии помогают решить массу задач в математике, физике и астрономии.

Над входом в школу Платона, знаменитого древнегреческого мудреца, учёного и философа, было написано

Да не войдёт сюда тот, кто не знает геометрии”.

Автор презентации:  Конева Надежда Александровна,  учитель математики МБОУ БГО СОШ №4 г. Борисоглебск Воронежская область  Использованный источник:

Автор презентации:

Конева Надежда Александровна,

учитель математики МБОУ БГО СОШ №4

г. Борисоглебск Воронежская область

Использованный источник: