СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Конспект урока геометрии на тему «Пропорциональные отрезки в прямоугольном треугольнике»

Категория: Геометрия

Нажмите, чтобы узнать подробности

Просмотр содержимого документа
«Конспект урока геометрии на тему «Пропорциональные отрезки в прямоугольном треугольнике»»

Конспект урока геометрии на тему

«Пропорциональные отрезки в прямоугольном треугольнике»

Тип урока: урок открытия новых знаний

Цели урока:

  1. образовательная – сформулировать понятие среднего пропорционального двух отрезков; рассмотреть задачу о пропорциональных отрезках в прямоугольном треугольнике, свойства прямоугольного треугольника, проведенной их вершины прямого угла; научиться применять средне пропорциональное в процессе решения задач;

  2. развивающая – развитие вычислительных навыков учащихся; развитие познавательных процессов, памяти, воображения, мышления, внимания, наблюдательности, сообразительности; расширение кругозора учащихся;

  3. воспитательная – воспитание трудолюбия, взаимопомощи, математической культуры; воспитание чувства ответственности перед товарищами, умение контролировать свои действия.

Инструменты: линейка.

Формы работы: фронтальная, парная, самостоятельная.

Оборудование: учебник, доска.

Учебник: «Геометрия 7 – 9 класс» Л.С.Атанасян, В.Ф.Бутузов, С.Б. Кадомцев, Э.Г.Позняков, И.И.Юдина.

План урока:

1. Организационный момент (1 мин).

2. Актуализация опорных знаний и способов действий (6 мин).

3. Изучение нового материала (15 мин).

4. Первичное применение нового материала (22 мин).

5. Подведение итогов урока (1 мин).

6. Постановка домашнего задания (1 мин).








  1. Организационный момент (1 мин).

– Здравствуйте ребята! Садитесь. Я надеюсь, что этот урок пройдет интересно, с большой пользой для всех. Очень хочу, чтобы те, кто еще равнодушен к царице всех наук, с нашего урока ушел с глубоким убеждением, что геометрия – интересный и нужный предмет.

  1. Актуализация знаний (6 мин).

– Чтобы приступить к новой теме, давайте вспомним основные понятия.

– Что называется отношением двух отрезков? (называется отношение тех чисел, которые выражают длины этих отрезков при условии, что отрезки измерены единицами одного наименования).

– В каком случае говорят, что отрезки АВ и СД пропорциональны отрезкам А1В1 и С1Д1(если треугольники подобные).


– Дайте определение подобных треугольников (треугольники, углы у которых соответственно равны, а стороны одного треугольника пропорциональны сходственным сторонам другого треугольника).


– Вспомните первый признак подобия треугольников (Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны).


–Вспомните второй признак подобия треугольников (Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то такие треугольники подобны).


–Вспомните третий признак подобия треугольников (Если стороны одного треугольника пропорциональны сторонам другого треугольника, то такие треугольники подобны).


– Какие треугольники называются подобными (Два треугольника называются подобными, если их углы соответственного равны и стороны одного треугольника пропорциональны сходственным сторонам другого треугольника).

  1. Изучение нового материала (15 мин).

– Давайте докажем, что высота прямоугольного треугольника, проведенная из вершины прямого угла, разделяет треугольник на два подобных прямоугольных треугольника, каждый из которых подобен данному треугольнику.

– Обратите внимание на рисунок, который изображен на доске.

Дано: ΔАВС, СD– высота.

Доказать: что ΔАВС ΔАСD, ΔАВС ΔСВD, ΔАСD ΔСВD.

Доказательство:

  1. Т. к. – общий, ΔАВС ΔАСD по первому признаку подобия треугольников

  2. Т.к. – общий, , то ΔАВС ΔСDВ, поэтому .

  3. Аналогично, в этих треугольника углы с вершиной D прямые и , то ΔАСD ΔСВD чтд.

– Отрезок XY, называется средним пропорциональны (или средним геометрическим) для отрезков АВ и СD, если

XY = .

– Исходя из задачи докажем два утверждения.

– Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное для отрезков, на которые делится гипотенуза этой высотой.

Дано: ΔАВС, СD– высота.

Найти: СD = .

Решение:

Т. к. = , то ΔАСD ΔСВD, откуда CD2 = AD* DB, следовательно CD = .

– Аналогично докажем второе утверждение.

– Катет прямоугольного треугольника есть среднее пропорциональное для гипотенузы и отрезка гипотенузы, заключенного между катетом и высотой, проведенной из вершины прямого угла.

Дано: ΔАВС, СD– высота.

Найти: АС = .

Решение:

Т.к. = , то ΔАВС ΔАСD, поэтому АС = .

  1. Закрепление изученного материала (22 мин).

– Давайте рассмотрим задачу № 572(а,в) на странице 152.


Дано: ΔАВС, , СH AB, AH = 25, HB = 16.

Найти: АС, ВС,СH – ?

Решение:

По свойству пропорциональных отрезков в прямоугольном треугольнике

  1. CH = = = = 20

AB = AH + HB = 25 + 16 = 41

  1. BC = = = = 4

  2. AC = = = 5

Ответ: , , 20.


В) Дано: ΔАВС, , СH AB, AС = 12, АH = 6.

Найти: АВ, ВС,HВ – ?

Решение:

По свойству пропорциональных отрезков в прямоугольном треугольнике

  1. АC = , АС2 = АВ * АН =АВ = = = 24

  2. НB = АВ – АН, НВ = 24 – 16 = 8

  3. BC = = = = 8

Ответ: 24,8 , 8.

– Задача № 573


Дано: ΔАВС, , СH AB, AВ = с, ВС = а, АС = b

Найти: AH, BH – ?

Решение:


По свойству пропорциональных отрезков в прямоугольном треугольнике

  1. ВC = , ВС2 = АВ * HВ = HB = =


  1. АС = , АС2 = АВ * АH = АH =



Ответ: , .



– Задача № 574 (а)


Дано: ΔАВС, , СH AB, AВ = с, ВС = а, АС = b, СН = h,

АН = bc, HB = ac

Доказать: СН =



Доказательство:

По свойству пропорциональных отрезков в прямоугольном треугольнике

  1. ВC = , ВС2 = АВ * HВ = HB = =


  1. АС = , АС2 = АВ * АН = АН =

  2. СН = , СН = =

Вывод: ЧТД

  1. Подведение итогов урока (1 мин).

– Что нового вы сегодня узнали?

– Уточните тему урока.

– Продолжите предложения:

– На уроке я узнал….

– На уроке я научился…

  1. Домашнее задание (1 мин).

П. 65 стр. 146, № 572 (б), 574(б).