СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Магические квадраты

Категория: Внеурочка

Нажмите, чтобы узнать подробности

занятие внеурочной деятельности

Просмотр содержимого документа
«Магические квадраты»

Презентация к открытому занятию по внеурочной деятельности  « Развивающая математика»  по теме: « Магические квадраты » Подготовила: Коковина М.В .

Презентация к открытому занятию по внеурочной деятельности

« Развивающая математика»

по теме: « Магические квадраты »

Подготовила: Коковина М.В .

Магические квадраты

Магические квадраты

 Волшебные квадраты были известны на Востоке ещё в глубокой древности.  Увлекались их составлением индусы и арабы.  В странах Европы о них узнали в XV веке. Средневековые звездочёты не сомневались, что эти квадраты обладают магической силой.

Волшебные квадраты были известны на Востоке ещё в глубокой древности.

Увлекались их составлением индусы и арабы.

В странах Европы о них узнали в XV веке. Средневековые звездочёты не сомневались, что эти квадраты обладают магической силой.

Знаки ло-шу Эти знаки известны под названием ло-шу и равносильны магическому квадрату.

Знаки ло-шу

Эти знаки известны под названием ло-шу и равносильны магическому квадрату.

Магические квадраты  третьего порядка 4 9 3 2 5 8 1 7 6 МК 3-го порядка из 9-ти первых натуральных чисел представленный матрицей 3х3

Магические квадраты

третьего порядка

4

9

3

2

5

8

1

7

6

МК 3-го порядка из 9-ти первых натуральных чисел представленный матрицей 3х3

15  Это число называют константой для данного магического квадрата

15

Это число называют константой для данного магического квадрата

Сумма чисел от 1 до 9 равна 45  Всего 3 строки В каждом столбце и на каждой диагонали сумма цифр должна быть равна 15 Возможные представления числа 15 в виде суммы трех слагаемых от1 до 9 : 9+ 5 +1 8+6+1 7+6+2 6+ 5 +4 9+4 + 2 8+ 5 +2 7+ 5 +3  8+4+3 В каждой строке сумма цифр должна быть 45 : 3=15

Сумма чисел от 1 до 9 равна 45 Всего 3 строки

В каждом столбце и на каждой диагонали сумма цифр должна быть равна 15

Возможные представления числа 15 в виде суммы трех слагаемых от1 до 9 :

9+ 5 +1 8+6+1 7+6+2 6+ 5 +4 9+4 + 2 8+ 5 +2 7+ 5 +3

8+4+3

В каждой строке сумма цифр должна быть 45 : 3=15

Число 5 встречается 4 раза, значит оно должно стоять в центре квадрата 5 Очевидно, что это числа 2,4,6,8, причем 2 и 8 на одной диагонали (2+5+8=15), а 4 и 6 на другой. Число, стоящее в углу квадрата, должно встречаться в суммах 3 раза (строка, столбец, диагональ)

Число 5 встречается 4 раза, значит оно должно стоять в центре квадрата

5

Очевидно, что это числа 2,4,6,8, причем 2 и 8 на одной диагонали (2+5+8=15), а 4 и 6 на другой.

Число, стоящее в углу квадрата, должно встречаться в суммах 3 раза (строка, столбец, диагональ)

Число, стоящее на одном из оставшихся 4 мест, должно встречаться в суммах 2 раза ( столбец, строка ) 2 6 5 4 8

Число, стоящее на одном из оставшихся 4 мест, должно встречаться в суммах 2 раза ( столбец, строка )

2

6

5

4

8

Такой способ дает несколько разных магических квадратов. 2 7 9 6 5 4 1 3 8  Число 8 можно расположить в любом из четырех углов, это дает разные по виду квадраты.

Такой способ дает несколько разных магических квадратов.

2

7

9

6

5

4

1

3

8

Число 8 можно расположить в любом из четырех углов, это дает разные по виду квадраты.

Физминутка для глаз «Ёлочка» Вот стоит большая ёлка (посмотреть вверх-вниз), Вот такой высоты (посмотреть вверх-вниз). У неё большие ветки (посмотреть влево - вправо), Вот такой ширины (посмотреть влево-вправо). Есть на ёлке даже шишка (посмотреть вверх), А внизу – берлога мишки (посмотреть вниз). Зиму спит в ней косолапый (закрыть глаза) И сосёт в берлоге лапу (поморгать глазами).

Физминутка для глаз «Ёлочка»

Вот стоит большая ёлка (посмотреть вверх-вниз),

Вот такой высоты (посмотреть вверх-вниз).

У неё большие ветки (посмотреть влево - вправо),

Вот такой ширины (посмотреть влево-вправо).

Есть на ёлке даже шишка (посмотреть вверх),

А внизу – берлога мишки (посмотреть вниз).

Зиму спит в ней косолапый (закрыть глаза)

И сосёт в берлоге лапу (поморгать глазами).

Впиши в свободные клетки магического квадрата числа от 3 до 9 таким образом, чтобы их сумма в каждом горизонтальном, вертикальном и трёхклеточном диагональном ряду равнялась 15.

Впиши в свободные клетки магического квадрата числа от

3 до 9 таким образом, чтобы их сумма в каждом

горизонтальном, вертикальном и трёхклеточном

диагональном ряду равнялась 15.

Расставить в клетках числа 1,4,6,7,8,9 так, чтобы в сумме получить 15.

Расставить в клетках числа 1,4,6,7,8,9 так, чтобы в сумме

получить 15.

Расставить в клетках числа 1,4,6,7,8,9 так, чтобы в сумме получить 15.

Расставить в клетках числа 1,4,6,7,8,9 так, чтобы в сумме

получить 15.

В этом квадрате нужно разместить ещё числа 2,2,2,3,3,3 так, чтобы в сумме получить число 6.

В этом квадрате нужно разместить ещё числа 2,2,2,3,3,3

так, чтобы в сумме получить число 6.

В этом квадрате нужно разместить ещё числа 2,2,2,3,3,3 так, чтобы в сумме получить число 6.

В этом квадрате нужно разместить ещё числа 2,2,2,3,3,3

так, чтобы в сумме получить число 6.

В клетках расставить числа 4,6,7,9,10,11,12 так , чтобы  в сумме получилось 24.

В клетках расставить числа 4,6,7,9,10,11,12 так , чтобы

в сумме получилось 24.

В клетках расставить числа 4,6,7,9,10,11,12 так , чтобы  в сумме получилось 24.

В клетках расставить числа 4,6,7,9,10,11,12 так , чтобы

в сумме получилось 24.

В клетках расставить числа 4,6,7,9,10,11,12 так , чтобы  в сумме получилось 21.

В клетках расставить числа 4,6,7,9,10,11,12 так , чтобы

в сумме получилось 21.

Числа 3,4,5,6,8,9 расставить в клетках так, чтобы в сумме получить 21.

Числа 3,4,5,6,8,9 расставить в клетках так, чтобы в сумме

получить 21.

Закончи предложения:  Сегодня мне было интересно….  Я научился…  Мне было трудно….

Закончи предложения:

  • Сегодня мне было интересно….
  • Я научился…
  • Мне было трудно….
ПРАКТИЧЕСКАЯ РАБОТА В квадрат 4 на 4 впишите числа от 1 до 16 по порядку 1 2 5 6 3 9 13 10 7 4 8 14 11 12 15 16 ПОМЕНЯЙТЕ  МЕСТАМИ ЧИСЛА,  СТОЯЩИЕ  В ПРОТИВОПОЛОЖНЫХ УГЛАХ    КВАДРАТА ПОМЕНЯЙТЕ  МЕСТАМИ ЧИСЛА,  СТОЯЩИЕ  В ПРОТИВОПОЛОЖНЫХ УГЛАХ ЦЕНТРАЛЬНОГО КВАДРАТА

ПРАКТИЧЕСКАЯ РАБОТА

В квадрат 4 на 4

впишите числа

от 1 до 16 по порядку

1

2

5

6

3

9

13

10

7

4

8

14

11

12

15

16

ПОМЕНЯЙТЕ МЕСТАМИ ЧИСЛА, СТОЯЩИЕ В ПРОТИВОПОЛОЖНЫХ УГЛАХ КВАДРАТА

ПОМЕНЯЙТЕ МЕСТАМИ ЧИСЛА, СТОЯЩИЕ В ПРОТИВОПОЛОЖНЫХ УГЛАХ ЦЕНТРАЛЬНОГО КВАДРАТА

16 2 5 3 6 9 13 7 10 4 8 11 14 15 12 1 Поменяйте местами числа, стоящие в противоположных углах центрального квадрата

16

2

5

3

6

9

13

7

10

4

8

11

14

15

12

1

Поменяйте местами числа, стоящие в противоположных углах центрального квадрата

16 2 5 3 11 9 13 10 7 4 8 6 14 12 15 1

16

2

5

3

11

9

13

10

7

4

8

6

14

12

15

1

Расположи в пустых клетках недостающие числа от 2 до 9  таким образом, чтобы их сумма в каждом горизонтальном, вертикальном и одном трёхклеточном диагональном ряду  равнялась 15, при этом цифры не должны повторяться.

Расположи в пустых клетках недостающие числа от 2 до 9

таким образом, чтобы их сумма в каждом горизонтальном,

вертикальном и одном трёхклеточном диагональном ряду

равнялась 15, при этом цифры не должны повторяться.

Полумагический квадрат  4-ого порядка После перевода с арабского языка, выяснил

Полумагический квадрат 4-ого порядка

После перевода с арабского языка, выяснил

О сколько нам открытий чудных Готовят просвещенья дух И опыт, сын ошибок трудных, И гений, парадоксов друг, И случай, бог изобретатель  А. С. Пушкин, 1829 г.

О сколько нам открытий чудных

Готовят просвещенья дух

И опыт, сын ошибок трудных,

И гений, парадоксов друг,

И случай, бог изобретатель

А. С. Пушкин, 1829 г.