СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Рабочая программа по алгебре, 11 класс

Категория: Математика

Нажмите, чтобы узнать подробности

Просмотр содержимого документа
«Рабочая программа по алгебре, 11 класс»

МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Министерство образования и науки Республики Бурятия

Иволгинский район

МОУ «СОШ ПОСЕЛЬЯ»


«Рассмотрено»

Руководитель МО

______

Протокол № __

от «_____»_________2024 г.


«Согласовано»

Заместитель

директора по УВР

________Цыдыпова Г.Р.

«30» августа 2024г.


«Утверждено»

Директор школы

_________Ширапов Б.К.

Приказ __________

от «30» августа 2024 г.







РАБОЧАЯ ПРОГРАММА

учебного предмета «Алгебра и начала математического анализа»


Класс: 11 Б, В

Уровень образованиясреднее общее образование

Уровень изучения предмета базовый уровень

Срок реализации программы2024/2025 учебный год

Количество часов по учебному предмету: 3 ч./неделю, всего – 102 ч/год

Рабочую программу составил(ли): Раднаева Л. Б., ID 5940895

Норбоева С.А., ID

















с. Поселье, 2024 г.





Пояснительная записка

Рабочая программа по «Алгебра и начала математического анализа» (базовый уровень) обязательной предметной области «Математика и информатика» для среднего общего образования разработана на основе следующих документов:

- Федеральный закон от 29.12.2012 N 273-ФЗ "Об образовании в Российской Федерации";

- Приказ Минпросвещения от 22.03.2021 № 115 «Об утверждении Порядка организации и осуществления образовательной деятельности по основным общеобразовательным программам – образовательным программам начального общего, основного общего и среднего общего образования».

- Приказ Министерства просвещения Российской Федерации от 31.05.2021 № 287 "Об утверждении федерального государственного образовательного стандарта основного общего образования" (Зарегистрирован 05.07.2021 № 64101).

- СП 2.4.3648-20 «Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодежи», утвержденные постановлением главного государственного санитарного врача России от 28.09.2020 № 28.

- СанПиН 1.2.3685-21 «Гигиенические нормативы и требования к обеспечению безопасности и (или) безвредности для человека факторов среды обитания», утвержденные постановлением главного санитарного врача от 28.01.2021 № 2.

- Приказ Минпросвещения от 20.05.2020 № 254 «Об утверждении федерального перечня учебников, допущенных к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования организациями, осуществляющими образовательную деятельность».

- Учебный план основного общего образования МОУ «СОШ Поселья» на 2024-2025 учебный год. 

- Положение о рабочей программе МОУ «СОШ Поселья».

- Программы воспитания и социализации обучающихся МОУ «СОШ Поселья».

ЦЕЛИ ИЗУЧЕНИЯ УЧЕБНОГО КУРСА

«Алгебра и начала анализа»


Курс «Алгебра и начала математического анализа» является одним из наиболее значимых в программе старшей школы, поскольку, с одной стороны, он обеспечивает инструментальную базу для изучения всех естественно-научных курсов, а с другой стороны, формирует логическое и абстрактное мышление учащихся на уровне, необходимом для освоения курсов информатики, обществознания, истории, словесности. В рамках данного курса учащиеся овладевают универсальным языком современной науки, которая формулирует свои достижения в математической форме.

Курс алгебры и начал математического анализа закладывает основу для успешного овладения законами физики, химии, биологии, понимания основных тенденций экономики и общественной жизни, позволяет ориентироваться в современных цифровых и компьютерных технологиях, уверенно использовать их в повседневной жизни. В тоже время овладение абстрактными и логически строгими математическими конструкциями развивает умение находить закономерности, обосновывать истинность утверждения, использовать обобщение и конкретизацию, абстрагирование и аналогию, формирует креативное и критическое мышление. В ходе изучения алгебры и начал математического анализа в старшей школе учащиеся получают новый опыт решения прикладных задач, самостоятельного построения математических моделей реальных ситуаций и интерпретации полученных решений, знакомятся с примерами математических закономерностей в природе, науке и в искусстве, с выдающимися математическими открытиями и их авторами.

Курс обладает значительным воспитательным потенциалом, который реализуется как через учебный материал, способствующий формированию научного мировоззрения, так и через специфику учебной деятельности, требующей самостоятельности, аккуратности, продолжительной концентрации внимания и ответственности за полученный результат.

В основе методики обучения алгебре и началам математического анализа лежит деятельностный принцип обучения.

Структура курса «Алгебра и начала математического анализа» включает следующие содержательно-методические линии: «Числа и вычисления», «Функции и графики», «Уравнения и неравенства», «Начала математического анализа», «Множества и логика». Все основные содержательно-методические линии изучаются на протяжении двух лет обучения в старшей школе, естественно дополняя друг друга и постепенно насыщаясь новыми темами и разделами. Данный курс является интегративным, поскольку объединяет в себе содержание нескольких математических дисциплин: алгебра, тригонометрия, математический анализ, теория множеств и др. По мере того как учащиеся овладевают всё более широким математическим аппаратом, у них последовательно формируется и совершенствуется умение строить математическую модель реальной ситуации, применять знания, полученные в курсе «Алгебра и начала математического анализа», для решения самостоятельно сформулированной математической задачи, а затем интерпретировать полученный результат.  

Содержательно-методическая линия «Числа и вычисления» завершает формирование навыков использования действительных чисел, которое было начато в основной школе. В старшей школе особое внимание уделяется формированию прочных вычислительных навыков, включающих в себя использование различных форм записи действительного числа, умение рационально выполнять действия с ними, делать прикидку, оценивать результат. Обучающиеся получают навыки приближённых вычислений, выполнения действий с числами, записанными в стандартной форме, использования математических констант, оценивания числовых выражений.

Линия «Уравнения и неравенства» реализуется на протяжении всего обучения в старшей школе, поскольку в каждом разделе программы предусмотрено решение соответствующих задач. Обучающиеся овладевают различными методами решения целых, рациональных, иррациональных, показательных, логарифмических и тригонометрических уравнений, неравенств и их систем. Полученные умения используются при исследовании функций с помощью производной, решении прикладных задач и задач на нахождение наибольших и наименьших значений функции. Данная содержательная линия включает в себя также формирование умений выполнять расчёты по формулам, преобразования целых, рациональных, иррациональных и тригонометрических выражений, а также выражений, содержащих степени и логарифмы. Благодаря изучению алгебраического материала происходит дальнейшее развитие алгоритмического и абстрактного мышления учащихся, формируются навыки дедуктивных рассуждений, работы с символьными формами, представления закономерностей и зависимостей в виде равенств и неравенств. Алгебра предлагает эффективные инструменты для решения практических и естественно-научных задач, наглядно демонстрирует свои возможности как языка науки.

Содержательно-методическая линия «Функции и графики» тесно переплетается с другими линиями курса, поскольку в каком-то смысле задаёт последовательность изучения материала. Изучение степенной, показательной, логарифмической и тригонометрических функций, их свойств и графиков, использование функций для решения задач из других учебных предметов и реальной жизни тесно связано как с математическим анализом, так и с решением уравнений и неравенств. При этом большое внимание уделяется формированию умения выражать формулами зависимости между различными величинами, исследовать полученные функции, строить их графики. Материал этой содержательной линии нацелен на развитие умений и навыков, позволяющих выражать зависимости между величинами в различной форме: аналитической, графической и словесной. Его изучение способствует развитию алгоритмического мышления, способности к обобщению и конкретизации, использованию аналогий.

Содержательная линия «Начала математического анализа» позволяет существенно расширить круг как математических, так и прикладных задач, доступных обучающимся, у которых появляется возможность исследовать и строить графики функций, определять их наибольшие и наименьшие значения, вычислять площади фигур и объёмы тел, находить скорости и ускорения процессов. Данная содержательная линия открывает новые возможности построения математических моделей реальных ситуаций, нахождения наилучшего решения в прикладных, в том числе социально-экономических, задачах. Знакомство с основами математического анализа способствует развитию абстрактного, формально-логического и креативного мышления, формированию умений распознавать проявления законов математики в науке, технике и искусстве. Обучающиеся узнают о выдающихся результатах, полученных в ходе развития математики как науки, и их авторах.

Содержательно-методическая линия «Множества и логика» в основном посвящена элементам теории множеств. Теоретико-множественные представления пронизывают весь курс школьной математики и предлагают наиболее универсальный язык, объединяющий все разделы математики и её приложений, они связывают разные математические дисциплины в единое целое. Поэтому важно дать возможность школьнику понимать теоретико-множественный язык современной математики и использовать его для выражения своих мыслей.

В курсе «Алгебра и начала математического анализа» присутствуют также основы математического моделирования, которые призваны сформировать навыки построения моделей реальных ситуаций, исследования этих моделей с помощью аппарата алгебры и математического анализа и интерпретации полученных результатов. Такие задания вплетены в каждый из разделов программы, поскольку весь материал курса широко используется для решения прикладных задач. При решении реальных практических задач учащиеся развивают наблюдательность, умение находить закономерности, абстрагироваться, использовать аналогию, обобщать и конкретизировать проблему. Деятельность по формированию навыков решения прикладных задач организуется в процессе изучения всех тем курса «Алгебра и начала математического анализа».

СОДЕРЖАНИЕ УЧЕБНОГО КУРСА


Числа и вычисления

Натуральные и целые числа. Признаки делимости целых чисел.

Степень с рациональным показателем. Свойства степени.

Логарифм числа. Десятичные и натуральные логарифмы.



Уравнения и неравенства

Преобразование выражений, содержащих логарифмы.

Преобразование выражений, содержащих степени с рациональным показателем.

Примеры тригонометрических неравенств.

Показательные уравнения и неравенства. 

Логарифмические уравнения и неравенства.

Системы линейных уравнений. Решение прикладных задач с помощью системы линейных уравнений.

Системы и совокупности рациональных уравнений и неравенств.

Применение уравнений, систем и неравенств к решению математических задач и задач из различных областей науки и реальной жизни.



Функции и графики

Функция. Периодические функции. Промежутки монотонности функции. Максимумы и минимумы функции. Наибольшее и наименьшее значение функции на промежутке.

Тригонометрические функции, их свойства и графики.

Показательная и логарифмическая функции, их свойства и графики.

Использование графиков функций для решения уравнений и линейных систем.

Использование графиков функций для исследования процессов и зависимостей, которые возникают при решении задач из других учебных предметов и реальной жизни.



Начала математического анализа

Непрерывные функции. Метод интервалов для решения неравенств.

Производная функции. Геометрический и физический смысл производной.

Производные элементарных функций. Формулы нахождения производной суммы, произведения и частного функций.

Применение производной к исследованию функций на монотонность и экстремумы. Нахождение наибольшего и наименьшего значения функции на отрезке.

Применение производной для нахождения наилучшего решения в прикладных задачах, для определения скорости процесса, заданного формулой или графиком.

Первообразная. Таблица первообразных.

Интеграл, его геометрический и физический смысл. Вычисление интеграла по формуле Ньютона―Лейбница.


ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ

ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ

Личностные результаты освоения программы учебного предмета «Математика» характеризуются:

Гражданское воспитание:

сформированностью гражданской позиции обучающегося как активного и ответственного члена российского общества, представлением о математических основах функционирования различных структур, явлений, процедур гражданского общества (выборы, опросы и пр.), умением взаимодействовать с социальными институтами в соответствии с их функциями и назначением.

Патриотическое воспитание:

сформированностью российской гражданской идентичности, уважения к прошлому и настоящему российской математики, ценностным отношением к достижениям российских математиков и российской математической школы, к использованию этих достижений в других науках, технологиях, сферах экономики.

Духовно-нравственного воспитания:

осознанием духовных ценностей российского народа; сформированностью нравственного сознания, этического поведения, связанного с практическим применением достижений науки и деятельностью учёного; осознанием личного вклада в построение устойчивого будущего.

Эстетическое воспитание:

эстетическим отношением к миру, включая эстетику математических закономерностей, объектов, задач, решений, рассуждений; восприимчивостью к математическим аспектам различных видов искусства.

Физическое воспитание:

сформированностью умения применять математические знания в интересах здорового и безопасного образа жизни, ответственного отношения к своему здоровью (здоровое питание, сбалансированный режим занятий и отдыха, регулярная физическая активность); физического совершенствования, при занятиях спортивно-оздоровительной деятельностью.

Трудовое воспитание:

готовностью к труду, осознанием ценности трудолюбия; интересом к различным сферам профессиональной деятельности, связанным с математикой и её приложениями, умением совершать осознанный выбор будущей профессии и реализовывать собственные жизненные планы; готовностью и способностью к математическому образованию и самообразованию на протяжении всей жизни; готовностью к активному участию в решении практических задач математической направленности.

Экологическое воспитание:

сформированностью экологической культуры, пониманием влияния социально-экономических процессов на состояние природной и социальной среды, осознанием глобального характера экологических проблем; ориентацией на применение математических знаний для решения задач в области окружающей среды, планирования поступков и оценки их возможных последствий для окружающей среды.

Ценности научного познания:

сформированностью мировоззрения, соответствующего современному уровню развития науки и общественной практики, пониманием математической науки как сферы человеческой деятельности, этапов её развития и значимости для развития цивилизации; овладением языком математики и математической культурой как средством познания мира; готовностью осуществлять проектную и исследовательскую деятельность индивидуально и в группе.





МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

Метапредметные результаты освоения программы учебного предмета «Математика» характеризуются овладением универсальными познавательными действиями, универсальными коммуникативными действиями, универсальными регулятивными действиями.

1) Универсальные познавательные действия, обеспечивают формирование базовых когнитивных процессов обучающихся (освоение методов познания окружающего мира; применение логических, исследовательских операций, умений работать с информацией).

Базовые логические действия:

  • выявлять и характеризовать существенные признаки математических объектов, понятий, отношений между понятиями; формулировать определения понятий; устанавливать существенный признак классификации, основания для обобщения и сравнения, критерии проводимого анализа;

  • воспринимать, формулировать и преобразовывать суждения: утвердительные и отрицательные, единичные, частные и общие; условные;

  • выявлять математические закономерности, взаимосвязи и противоречия в фактах, данных, наблюдениях и утверждениях; предлагать критерии для выявления закономерностей и противоречий;

  • делать выводы с использованием законов логики, дедуктивных и индуктивных умозаключений, умозаключений по аналогии;

  • проводить самостоятельно доказательства математических утверждений (прямые и от противного), выстраивать аргументацию, приводить примеры и контрпримеры; обосновывать собственные суждения и выводы;

  • выбирать способ решения учебной задачи (сравнивать несколько вариантов решения, выбирать наиболее подходящий с учётом самостоятельно выделенных критериев).

Базовые исследовательские действия:

  • использовать вопросы как исследовательский инструмент познания; формулировать вопросы, фиксирующие противоречие, проблему, устанавливать искомое и данное, формировать гипотезу, аргументировать свою позицию, мнение;

  • проводить самостоятельно спланированный эксперимент, исследование по установлению особенностей математического объекта, явления, процесса, выявлению зависимостей между объектами, явлениями, процессами;

  • самостоятельно формулировать обобщения и выводы по результатам проведённого наблюдения, исследования, оценивать достоверность полученных результатов, выводов и обобщений;

  • прогнозировать возможное развитие процесса, а также выдвигать предположения о его развитии в новых условиях.

Работа с информацией:

  • выявлять дефициты информации, данных, необходимых для ответа на вопрос и для решения задачи;

  • выбирать информацию из источников различных типов, анализировать, систематизировать и интерпретировать информацию различных видов и форм представления;

  • структурировать информацию, представлять её в различных формах, иллюстрировать графически;

  • оценивать надёжность информации по самостоятельно сформулированным критериям.

2) Универсальные коммуникативные действия, обеспечивают сформированность социальных навыков обучающихся.

Общение:

  • воспринимать и формулировать суждения в соответствии с условиями и целями общения; ясно, точно, грамотно выражать свою точку зрения в устных и письменных текстах, давать пояснения по ходу решения задачи, комментировать полученный результат;

  • в ходе обсуждения задавать вопросы по существу обсуждаемой темы, проблемы, решаемой задачи, высказывать идеи, нацеленные на поиск решения; сопоставлять свои суждения с суждениями других участников диалога, обнаруживать различие и сходство позиций; в корректной форме формулировать разногласия, свои возражения;

  • представлять результаты решения задачи, эксперимента, исследования, проекта; самостоятельно выбирать формат выступления с учётом задач презентации и особенностей аудитории.

Сотрудничество:

  • понимать и использовать преимущества командной и индивидуальной работы при решении учебных задач; принимать цель совместной деятельности, планировать организацию совместной работы, распределять виды работ, договариваться, обсуждать процесс и результат работы; обобщать мнения нескольких людей;

  • участвовать в групповых формах работы (обсуждения, обмен мнений, «мозговые штурмы» и иные); выполнять свою часть работы и координировать свои действия с другими членами команды; оценивать качество своего вклада в общий продукт по критериям, сформулированным участниками взаимодействия.

3) Универсальные регулятивные действия, обеспечивают формирование смысловых установок и жизненных навыков личности.

Самоорганизация:

 составлять план, алгоритм решения задачи, выбирать способ решения с учётом имеющихся ресурсов и собственных возможностей, аргументировать и корректировать варианты решений с учётом новой информации.

Самоконтроль:

  • владеть навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов; владеть способами самопроверки, самоконтроля процесса и результата решения математической задачи;

  • предвидеть трудности, которые могут возникнуть при решении задачи, вносить коррективы в деятельность на основе новых обстоятельств, данных, найденных ошибок, выявленных трудностей;

  • оценивать соответствие результата цели и условиям, объяснять причины достижения или недостижения результатов деятельности, находить ошибку, давать оценку приобретённому опыту.

ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

Числа и вычисления

Оперировать понятиями: натуральное, целое число; использовать признаки делимости целых чисел, разложение числа на простые множители для решения задач.

Оперировать понятием: степень с рациональным показателем.

Оперировать понятиями: логарифм числа, десятичные и натуральные логарифмы.



Уравнения и неравенства

Применять свойства степени для преобразования выражений; оперировать понятиями: показательное уравнение и неравенство; решать основные типы показательных уравнений и неравенств.

Выполнять преобразования выражений, содержащих логарифмы; оперировать понятиями: логарифмическое уравнение и неравенство; решать основные типы логарифмических уравнений и неравенств.

Находить решения простейших тригонометрических неравенств.

Оперировать понятиями: система линейных уравнений и её решение; использовать систему линейных уравнений для решения практических задач.

Находить решения простейших систем и совокупностей рациональных уравнений и неравенств.

Моделировать реальные ситуации на языке алгебры, составлять выражения, уравнения, неравенства и системы по условию задачи, исследовать построенные модели с использованием аппарата алгебры.



Функции и графики

Оперировать понятиями: периодическая функция, промежутки монотонности функции, точки экстремума функции, наибольшее и наименьшее значения функции на промежутке; использовать их для исследования функции, заданной графиком.

Оперировать понятиями: графики показательной, логарифмической и тригонометрических функций; изображать их на координатной плоскости и использовать для решения уравнений и неравенств.

 Изображать на координатной плоскости графики линейных уравнений и использовать их для решения системы линейных уравнений.

Использовать графики функций для исследования процессов и зависимостей из других учебных дисциплин.



Начала математического анализа

Оперировать понятиями: непрерывная функция; производная функции; использовать геометрический и физический смысл производной для решения задач.

Находить производные элементарных функций, вычислять производные суммы, произведения, частного функций.

Использовать производную для исследования функции на монотонность и экстремумы, применять результаты исследования к построению графиков.

Использовать производную для нахождения наилучшего решения в прикладных, в том числе социально-экономических, задачах.

Оперировать понятиями: первообразная и интеграл; понимать геометрический и физический смысл интеграла.

Находить первообразные элементарных функций; вычислять интеграл по формуле Ньютона–Лейбница.

Решать прикладные задачи, в том числе социально-экономического и физического характера, средствами математического анализа.



ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

Алгебра и начала математического анализа





№ п/п

Наименование разделов и тем программы



Всего

Контрольные работы

1

Степень с рациональным показателем. Показательная функция. Показательные уравнения и неравенства

12

1

2

Логарифмическая функция. Логарифмические уравнения и неравенства

12


3

Тригонометрические функции и их графики. Тригонометрические неравенства

9

1

4

Производная. Применение производной

24

1

5

Интеграл и его применения

9


6

Системы уравнений

12

1

7

Натуральные и целые числа

6


8

Повторение, обобщение, систематизация знаний

18

2

ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ

102

6











ПОУРОЧНОЕ ПЛАНИРОВАНИЕ

АЛГЕБРА

п/п

Тема урока



Всего

Дата изучения

1

Степень с рациональным показателем

1

02.09.2024

2

Свойства степени

1

05.09.2024

3

[[Преобразование выражений, содержащих рациональные степени

1

06.09.2024

4

[[Преобразование выражений, содержащих рациональные степени]]

1

09.09.2024

5

[[Преобразование выражений, содержащих рациональные степени]]

1

12.09.2024

6

[[Показательные уравнения и неравенства]]

1

13.09.2024

7

[[Показательные уравнения и неравенства]]

1

16.09.2024

8

[[Показательные уравнения и неравенства]]

1

19.09.2024

9

[[Показательные уравнения и неравенства]]

1

20.09.2024

10

[[Показательные уравнения и неравенства]]

1

23.09.2024

11

[[Показательная функция, её свойства и график]]

1

24.09.2024

12

Контрольная работа по теме [["Степень с рациональным показателем. Показательная функция. Показательные уравнения и неравенства"]]

1

27.09.2024

13

[[Логарифм числа]]

1

30.09.2024

14

[[Десятичные и натуральные логарифмы]]

1

02.10.2024

15

[[Преобразование выражений, содержащих логарифмы]]

1

03.10.2024

16

[[Преобразование выражений, содержащих логарифмы]]

1

07.10.2024

17

[[Преобразование выражений, содержащих логарифмы]]

1

09.10.2024

18

[[Преобразование выражений, содержащих логарифмы]]

1

10.10.2024

19

[[Логарифмические уравнения и неравенства]]

1

10.10.2024

20

[[Логарифмические уравнения и неравенства]]

1

14.10.2024

21

Логарифмические уравнения и неравенства

1

16.10.2024

22

[[Логарифмические уравнения и неравенства]]

1

17.10.2024

23

[[Логарифмическая функция, её свойства и график]]

1

21.10.2024

24

[[Логарифмическая функция, её свойства и график]]

1

23.10.2024

25

[[Тригонометрические функции, их свойства и графики]]

1

24.10.2024

26

[[Тригонометрические функции, их свойства и графики]]

1

05.11.2024

27

[[Тригонометрические функции, их свойства и графики]]

1

07.11.2024

28

[[Тригонометрические функции, их свойства и графики]]

1

08.11.2024

29

[[Примеры тригонометрических неравенств]]

1

13.11.2024

30

[[Примеры тригонометрических неравенств]]

1

15.11.2024

31

[[Примеры тригонометрических неравенств]]

1

18.11.2024

32

[[Примеры тригонометрических неравенств]]

1

21.11.2024

33

Контрольная работа по теме [["Логарифмическая функция. Логарифмические уравнения и неравенства.Тригонометрические функции и их графики.Тригонометрические неравенства"]]

1

22.11.2024

34

[[Непрерывные функции]]

1

24.11.2024

35

[[Метод интервалов для решения неравенств]]

1

25.11.2024

36

[[Метод интервалов для решения неравенств]]

1

29.11.2024

37

[[Производная функции]]

1

02.12.2024

38

[[Производная функции]]

1

04.12.2024

39

[[Геометрический и физический смысл производной]]

1

05.12.2024

40

[[Геометрический и физический смысл производной]]

1

09.12.2024

41

[[Производные элементарных функций]]

1

11.12.2024

42

[[Производные элементарных функций]]

1

12.12.2024

43

[[Производная суммы, произведения, частного функций]]

1

16.12.2024

44

[[Производная суммы, произведения, частного функций]]

1

18.12.2024

45

[[Производная суммы, произведения, частного функций]]

1

19.12.2024

46

[[Применение производной к исследованию функций на монотонность и экстремумы]]

1

23.12.2024

47

[[Применение производной к исследованию функций на монотонность и экстремумы]]

1

25.12.2024

48

[[Применение производной к исследованию функций на монотонность и экстремумы]]

1

26.12.2024

49

[[Применение производной к исследованию функций на монотонность и экстремумы]]

1

13.01.2025

50

[[Нахождение наибольшего и наименьшего значения функции на отрезке]]

1

15.01.2025

51

[[Нахождение наибольшего и наименьшего значения функции на отрезке]]

1

16.01.2025

52

[[Нахождение наибольшего и наименьшего значения функции на отрезке]]

1

20.01.2025

53

[[Нахождение наибольшего и наименьшего значения функции на отрезке]]

1

22.01.2025

54

[[Нахождение наибольшего и наименьшего значения функции на отрезке]]

1

23.01.2025

55

[[Нахождение наибольшего и наименьшего значения функции на отрезке]]

1

27.01.2025

56

[[Применение производной  для нахождения наилучшего решения в прикладных задачах,  для определения скорости процесса, заданного формулой или графиком]]

1

29.01.2025

57

Контрольная работа по теме [["Производная. Применение производной"]]

1

30.01.2025

58

[[Первообразная. Таблица первообразных]]

1

03.02.2025

59

[[Первообразная. Таблица первообразных]]

1

05.02.2025

60

[[Интеграл, геометрический и физический смысл интеграла]]

1

06.02.2025

61

[[Интеграл, геометрический и физический смысл интеграла]]

1

10.02.2025

62

[[Интеграл, геометрический и физический смысл интеграла]]

1

12.02.2025

63

[[Вычисление интеграла по формуле Ньютона―Лейбница]]

1

13.02.2025

64

[[Вычисление интеграла по формуле Ньютона―Лейбница]]

1

17.02.2052

65

[[Вычисление интеграла по формуле Ньютона―Лейбница]]

1

19.02.2025

66

[[Вычисление интеграла по формуле Ньютона―Лейбница]]

1

20.02.2025

67

[[Системы линейных уравнений]]

1

24.02.2025

68

[[Системы линейных уравнений]]

1

26.02.2025

69

[[Решение прикладных задач с помощью системы линейных уравнений]]

1

27.02.2025

70

[[Решение прикладных задач с помощью системы линейных уравнений]]

1

03.03.2025

71

[[Системы и совокупности целых, рациональных, иррациональных, показательных, логарифмических уравнений и неравенств]]

1

05.03.2025

72

[[Системы и совокупности целых, рациональных, иррациональных, показательных, логарифмических уравнений и неравенств]]

1

06.03.2025

73

[[Системы и совокупности целых, рациональных, иррациональных, показательных, логарифмических уравнений и неравенств]]

1

10.03.2025

74

[[Системы и совокупности целых, рациональных, иррациональных, показательных, логарифмических уравнений и неравенств]]

1

12.03.2025

75

[[Использование графиков функций для решения уравнений и систем]]

1

13.03.2025

76

[[Использование графиков функций для решения уравнений и систем]]

1

17.03.2025

77

[[Применение  уравнений, систем и неравенств к решению математических задач и задач из различных областей науки и реальной жизни]]

1

19.03.2025

78

Контрольная работа по теме [["Интеграл и его применения. Системы уравнений"]]

1

24.03.2025

79

[[Натуральные и целые числа в задачах из реальной жизни]]

1

26.03.2025

80

[[Натуральные и целые числа в задачах из реальной жизни]]

1

27.03.2025

81

[[Натуральные и целые числа в задачах из реальной жизни]]

1

07.04.2025

82

[[Признаки делимости целых чисел]]

1

09.04.2025

83

[[Признаки делимости целых чисел]]

1

10.04.2025

84

[[Признаки делимости целых чисел]]

1

14.04.2025

85

Повторение, обобщение, систематизация знаний. [[Уравнения]]

1

16.04.2025

86

Повторение, обобщение, систематизация знаний. [[Уравнения]]

1

17.04.2025

87

Повторение, обобщение, систематизация знаний. [[Уравнения]]

1

21.04.2025

88

Повторение, обобщение, систематизация знаний. [[Уравнения]]

1

23.04.2025

89

Повторение, обобщение, систематизация знаний. [[Уравнения]]

1

24.04.2025

90

Повторение, обобщение, систематизация знаний. [[Уравнения]]

1

28.04.2025

91

Повторение, обобщение, систематизация знаний. [[Неравенства]]

1

30.04.2025

92

Повторение, обобщение, систематизация знаний. [[Неравенства]]

1

05.05.2025

93

Повторение, обобщение, систематизация знаний. [[Неравенства]]

1

07.05.2025

94

Повторение, обобщение, систематизация знаний. [[Неравенства]]

1

08.05.2025

95

Повторение, обобщение, систематизация знаний. [[Системы уравнений]]

1

12.05.2025

96

Повторение, обобщение, систематизация знаний. [[Системы уравнений]]

1

14.05.2025

97

Повторение, обобщение, систематизация знаний. [[Функции]]

1

15.05.2025

98

Повторение, обобщение, систематизация знаний. [[Функции]]

1

19.05.2025

99

Итоговая контрольная работа

1

21.01.2025

100

Итоговая контрольная работа

1

23.01.2025

101

Обобщение, систематизация знаний [[за курс алгебры и начал математического анализа 10-11 классов]]

1

26.01.2025

102

Обобщение, систематизация знаний [[за курс алгебры и начал математического анализа 10-11 классов]]

1

27.05.2025

ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ

102