СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Линейная алгебра. Системы линейных уравнений

Категория: Математика

Нажмите, чтобы узнать подробности

Системой линейных алгебраических уравнений (СЛАУ) называется объединение n линейных уравнений, каждое из которых содержит k переменных:

Решение системы линейных уравнений по формулам Крамера

Чтобы решить систему линейных уравнений методом Крамера, нужно познакомиться с понятием определителя.

Определение

Определителем системы называют запись чисел в квадратной таблице, в соответствие которой ставится число по некоторому правилу.

Давайте познакомимся с этим правилом. Пусть даны четыре числа a, b, c, d. Пусть они имеют следующее расположение в квадратной таблице:

Значение определителя системы в этом случае находится по формуле:

Определитель, составленный из коэффициентов при переменных в линейной системе уравнений, называется главным определителем системы. Будем обозначать его Δ. Например, у рассмотренной выше системы уравнений:

главный определитель будет иметь вид:

Найдём его значение:

Для решения системы линейных уравнений методом Крамера нам понадобятся ещё два определителя, которые называются вспомогательными:

Отметим, что в данные определители уже входят правые части каждого уравнения системы. Так, в определитель Δₓ первым столбцом записываем правые части уравнений (так называемые свободные члены уравнений), второй столбец оставляем таким же, как в главном определителе системы. В определитель Δу вторым столбцом записываем правые части уравнений, а первый столбец оставляем таким же, как в главном определителе системы.

Итак, формулы Крамера для решения системы двух линейных уравнений с двумя переменными: 

Отметим, что данный метод решения СЛАУ можно применять лишь в тех случаях, когда Δ ≠ 0.

Убедимся в том, что данные формулы работают, подставив в них ранее найденные значения определителей:

Пара чисел (4;3) действительно является решением данной системы уравнений.

Просмотр содержимого документа
«Линейная алгебра. Системы линейных уравнений»

Линейная алгебра

Системы линейных уравнений.

Методы решения систем линейных уравнений.


Разбор решения



Задача 1.

Решить систему методом Гаусса, матричным способом и используя правило Крамера.


Решение:

Решим систему матричным способом, для этого вычислим обратную матрицу , где - алгебраические дополнения к элементам матрицы.

- матрица невырожденная.


Решим систему методом Крамера.

Главный определитель системы:

.

Разложим определитель по элементам первой строки, пользуясь формулой .

Запишем и вычислим вспомогательные определители

Тогда

Ответ:

Решим систему методом Гаусса, для этого составим расширенную матрицу системы и упростим ее приведением к треугольному виду.

Таким образом, система равносильна системе

Находим

Ответ: , ,

При решении всеми методами одной и той же системы, мы получим один ответ.


Задача 2. Вычислить определитель .

Решение.

Для вычисления определителя третьего порядка будем использовать известную формулу Саррюса (правило треугольников), которое может быть записано следующей формулой:

Ответ: 0.



Задача 3. Выполнить действия:

Решение.

Выполним решение по действиям.

=

.

.


Ответ: .

Операция умножения двух матриц вводится только для случая, когда число столбцов первой матрицы равно числу строк второй матрицы.

Если , , то произведением матрицы называется матрица , такая, что , где .

Пример:

Произведение не определено, так как число столбцов матрицы А (3) не совпадает с числом строк матрицы В (2).


Произведение определено.