Неравенства f(x) > g(x), f(x) < g(x), называются строгими, а неравенства f(x)
g(x), f(x)
g(x) — нестрогими.
Решением неравенства, называется всякое значение переменой, при котором данное неравенство верно. Например, решением неравенства f(x) > g(x) является всякое значение переменной x = a, при котором справедливо неравенство
f(a) > g(a), или функция f(x) при x = a принимает большее значение чем функция g(x).
Задание "решить неравенство" означает, что требуется найти множество всех его решений. Это множество может оказаться пустым — в случае, когда решений нет. Множество всех решений неравенства будем называть его ответом.
Запись нескольких неравенств под знаком фигурной скобки называется системой (число и вид неравенств, входящих в систему, может быть произвольным). Решение системы неравенств есть пересечение решений всех входящих в нее неравенств. Двойное неравенство f(x) < g(x) < h(x) можно записать в виде системы:

Запись нескольких неравенств, объединенных квадратной скобкой, называется совокупностью данных неравенств. Решение совокупности есть объединение решений входящих в нее неравенств.
Пример 1. Решить неравенство 
Решение.
Частное двух чисел положительно в том случае, когда и делимое, и делитель положительны, или они отрицательны. Опираясь на это утверждение составим совокупность двух систем неравенств.

Сначала решим систему неравенств


Первая система равносильна неравенству х > 1.
Теперь, решаем систему неравенств:


Вторая система равносильна неравенству x < -1.
Решение (множество значений переменной обращающих данное неравенство в истинное числовое неравенство) искомого неравенства можно записать несколькими способами:
1) x >1 и x < -1.
2) 
3) x
(-
; -1)
(1; +
).
Пример 2. Решить неравенство. 
Решение.
ОДЗ:
откуда имеем x
[-1; 5)
(5; +
)
Решим уравнение
Числитель дроби равен 0 при x = -1, это и есть корень уравнения. Отметим найденный корень на чертеже (черным кружком, т.к. неравенство нестрогое), предварительно отметив ОДЗ:

Чтобы определить знак на промежутке (-1; 5) возьмем число 0, 
Чтобы определить знак на втором промежутке возьмем число 8, 
Точки 0 и 8 выбирались произвольно, но так, чтобы упростить процесс вычисления каждого значения функции.
Ответ: (-5; +
).