СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Математика. Правила быстрого решения нестандартных неравенств: иррациональных, показательных и пр. Правила и доказательства.

Категория: Математика

Нажмите, чтобы узнать подробности

Неравенства f(x) > g(x),   f(x) < g(x),  называются  строгими,   а  неравенства  f(x)    g(x), f(x)    g(x) — нестрогими.

Решением неравенства, называется всякое значение переменой, при котором  данное  неравенство  верно.  Например,   решением  неравенства        f(x) > g(x) является всякое значение переменной x = a, при котором справедливо неравенство   f(a) > g(a), или функция f(x) при x = a принимает большее значение чем функция g(x).

Задание "решить неравенство" означает, что требуется найти множество всех его решений. Это множество может оказаться пустым — в случае, когда решений нет. Множество всех решений неравенства будем называть его ответом.

Запись нескольких неравенств под знаком фигурной скобки называется системой (число и вид неравенств, входящих в систему, может быть произвольным). Решение системы неравенств есть пересечение решений всех входящих в нее неравенств. Двойное неравенство f(x) < g(x) < h(x) можно записать в виде системы:

Запись нескольких неравенств, объединенных квадратной скобкой, называется совокупностью данных неравенств. Решение совокупности есть объединение решений входящих в нее неравенств.

 

Пример 1.  Решить неравенство  

Решение.

Частное двух чисел положительно в том случае, когда и делимое, и делитель положительны, или они отрицательны. Опираясь на это утверждение составим совокупность двух систем неравенств.

Сначала решим систему неравенств

Первая система равносильна неравенству х > 1.

Теперь, решаем систему неравенств:

Вторая система равносильна неравенству x < -1.

Решение (множество значений переменной обращающих данное неравенство в истинное числовое неравенство) искомого неравенства можно записать несколькими способами:

1)  x >1 и x < -1.

2)  

3) x   (-  ; -1)    (1; +  ).

 

Пример 2.  Решить неравенство.  

Решение.

ОДЗ:   откуда имеем x  [-1; 5)   (5; +  )

Решим уравнение    Числитель дроби равен 0 при x = -1, это и есть корень уравнения. Отметим найденный корень на чертеже (черным кружком, т.к. неравенство нестрогое), предварительно отметив ОДЗ:

Чтобы определить знак на промежутке (-1; 5) возьмем число 0,  

Чтобы определить знак на втором промежутке возьмем число 8,  

Точки 0 и 8 выбирались произвольно, но так, чтобы упростить процесс вычисления каждого значения функции.

Ответ:   (-5; +  ).