СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

"Мир красоты математики"

Категория: Математика

Нажмите, чтобы узнать подробности

Общешкольное мероприятие по математике "Мир красоты математики" для 5-11 классов. Папка содержит презентацию "Красота Математики" (составлена не мной, но мне очень понравилась и я использовала ее при проведении мероприяти, спасибо составителю данной презентации), сценарий проведения и презентация с использованием музыкальных произведений).

Просмотр содержимого документа
«красота математики»

Сценарий мероприятия. «Путешествие в мир математики и красоты»

Учитель:

- Добрый день, дорогие ребята! Мы сегодня пригласили вас для общения с математикой. Мы поговорим не просто о математике, а о ее красоте. Я и мои помощники сегодня расскажем вам об удивительном мире красоты и гармонии.

- А начну я со слов Жуковского : « В математике есть своя красота, как в живописи и поэзии».

Математика владеет не только истиной, но и высшей красотой.

Все мы знаем: Математика – царица всех наук, символ мудрости. А кто из вас знает, почему математику так называют?

Как говорил Гейзенберг: «Математика есть прообраз красоты мира»

Так давайте совершим сегодня небольшое путешествие и узнаем в чем же все, таки заключается красота мира математики.

Ведущий 1: (слайд 2)

- Красота математики среди наук недосягаема, а красота является одним из связующих звеньев науки и искусства.

- Это не только стройная система законов, но и уникальное средство познания красоты.

(слайд 3).

- Люди придумали цифры и действия с ними, а потом в них же открыли множество законов, правил и теорем.

В жизни цифр, линий, углов и бесконечно малых величин можно увидеть много красивого – изящные теоремы, тела, поверхности, даже условия задач.

- Числа живут своей жизнью, и мы, соприкоснувшись с ней, удивляемся, а иногда и любуемся ею.

Учитель:

- Сейчас мы вам покажем несколько математических пирамид, в которых математика предстает «как красота и чудо в чистом виде». (слайды 4 -7)

Математическая пирамида №1

1 x 8 + 1 = 9
12 x 8 + 2 = 98
123 x 8 + 3 = 987
1234 x 8 + 4 = 9876
12345 x 8 + 5 = 987 65

- Как вы думаете, какие вычисления будут выполнены в следующей строке и в последующих?



Математическая пирамида №2

1x 9 + 2 = 11
12 x 9 + 3 = 111
123 x 9 + 4 = 1111
1234 x 9 + 5 = 11111

- Математика – это единственная наука, которая имеет дело с абсолютным идеалом.

Математическая пирамида №3

9 x 9 + 7 = 88
98
x 9 + 6 = 888
987
x 9 + 5 = 8888
9876
x 9 + 4 = 88888
98765
x 9 + 3 = 888888

- Замечательно! Не правда ли?

Математическая пирамида №4

1 x 1 = 1
11
x 11 = 121
111
x 111 = 12321
1111
x 1111 = 1234321
11111
x 11111 = 123454321

- Математика в своей сущности достаточно таинственна и романтична.

(слайд 8)

- Это интересно:

1. Возьмем число 142857 и удвоим его. Получим 285714. Что-нибудь интересное заметили? (те же цифры, только переставлены местами).

- А что будет, если умножим на3, на 4 и т.д.

428571, 571428, 714285, 857142. Закономерность продолжается.

(слайд 9) Загадочная красота.

- Как вы думаете, о чем мы вам сейчас расскажем?

- Великий ученый древности Платон говорил : ««...быть прекрасным значит быть симметричным и соразмерным»

Поговорим о симметрии.

Ведущий 2. (слайд 10)

- Симметрия - закономерное расположение элементов формы относительно плоскости, оси или точки. Человек давно осмыслил симметрию в творениях природы и стал использовать се как средство организации искусственных форм. В Древней Греции слово "симметрия" было синонимом красоты, гармонии формы.

(слайды 11-13)

- Тадж-Махал — мавзолей-мечеть, находящийся в Агре, Индия, на берегу реки Ямуна. Усыпальница имеет центральную симметрию относительно гробницы Мумтаз-Махал. Единственным нарушением этой симметрии является гробница Шах-Джахана, которую там соорудили после его смерти.

- Особенно блистательно использовали симметрию в архитектурных сооружениях древние зодчие. Древнегреческие архитекторы были убеждены, что в своих произведениях они руководствуются законами, которые управляют природой. Выбирая симметричные формы, художник тем самым выражал свое понимание природной гармонии как устойчивости, спокойствия и равновесия.

- Если преобразование симметрии относительно плоскости переводит фигуру в себя, то фигура называется симметричной относительно плоскости, а данная плоскость – плоскостью симметрии этой фигуры. В некоторых источниках такую симметрию называют зеркальной. А зеркало не просто копирует объект, но и меняет местами передние и задние по отношению к зеркалу части объекта.



Ведущий 1. (слайды с 14 -17)

Симметрия в природе

- Симметрия широко распространена в природе. Ее можно наблюдать в форме листьев и цветов растений, в расположении различных органов животных.

- Красота растений привлекала внимание математиков веками. Активнее всего изучались интересные геометрические свойства растений, такие как симметрия листьев относительно центральной оси, радиальная симметрия цветов, и спиральное расположение семечек в шишках. Красота связана с симметрией.

Симметрия в неживой природе

- В мир неживой природы очарование симметрии вносят кристаллы. Каждая снежинка- это маленький кристалл замерзшей воды. Форма снежинок может быть очень разнообразной, но все они обладают симметрией - поворотной симметрией 6-го порядка и, кроме того, зеркальной симметрией.



О, симметрия! Гимн тебе пою!

Тебя повсюду в мире узнаю.

Ты в Эйфелевой башне, в малой мошке,

Ты в елочке, что у лесной дорожки.

С тобою в дружбе и тюльпан, и роза,

И снежный рой – творение мороза!

- Симметрия является фундаментальным свойством природы, представление о котором слагалось в течение десятков, сотен, тысяч поколений.



Учитель: (слайды 18 -20)

- В 1968г. Венгерский биолог и ботаник Аристид Линденмайер (Aristid Lindenmayer) предложил математическую модель для изучения развития простых многоклеточных организмов, которая позже была расширена и используется для моделирования сложных ветвящихся структур — разнообразных деревьев и цветов.

Rewriting

- Rewriting — это способ получения сложных объектов путем замены частей простого начального объекта по некоторым правилам. Классическим примером является снежинка. На рисунке initiator — это начальный объект, грани которого заменяются на generator. Далее с новым объектом проделывается то же самое.

Замощение Пенроуза

- Его красота в непериодичности. Любой сколь угодно большой фрагмент узора повторяется бесконечное число раз, однако, нет таких двух точек где узор наложился бы сам на себя полностью (как не крути).



Ведущий 2. (слайды 21-24)

Дерево Пифагора

- Пифагор, доказывая свою знаменитую теорему, построил фигуру, где на сторонах прямоугольного треугольника расположены квадраты. В наш век эта фигура Пифагора выросла в целое дерево.

- Впервые дерево Пифагора построил А. Е. Босман (1891—1961) во время второй мировой войны, используя обычную чертёжную линейку.

- Одним из свойств дерева Пифагора является то, что, если площадь первого квадрата равна единице, то на каждом уровне сумма площадей квадратов тоже будет равна единице.

- Если изображать только отрезки, соединяющие каким-либо образом выбранные "центры" треугольников, то получается обнаженное дерево Пифагора.









- Если в классическом дереве Пифагора угол равен 45 градусам, то также можно построить и обобщённое дерево Пифагора при использовании других углов. Такое дерево часто называют обдуваемое ветром дерево Пифагора.

(слайд 24) Гипножаба (просмотр 2 мин).

Учитель.

- Красота есть истина, а истина — красота. Говорил Джон Китс.



- Первые примеры самоподобных множеств с необычными свойствами появились в XIX веке (например, множество Кантора). Термин «фрактал» был введён Бенуа Мандельбротом в 1975 году и получил широкую популярность с выходом в 1977 году его книги «Фрактальная геометрия природы». Определение фрактала, данное Мандельбротом, звучит так: "Фракталом называется структура, состоящая из частей, которые в каком-то смысле подобны целому"

- Они кажутся более живыми и красивыми, чем многие рисунки, несмотря на то, что являются результатом работы программы.

Слайд 27 (лунная соната Бетховина).

Ведущий 1.

- Пифагор создал свою школу мудрости, положив в нее основу два искусства – музыку и математику. Он считал, что гармония чисел сродни гармонии звуков и что оба этих занятия упорядочивают хаотичность мышления и дополняют друг друга. Пифагор говорил своим ученика, что числа правят миром.

- Математика и музыка - два полюса человеческой культуры. Слушая музыку, мы попадаем в волшебный мир звуков. Решая задачи, погружаемся в строгое пространство чисел. И не задумываемся о том, что мир звуков и пространство чисел издавна соседствуют друг с другом.



(слайд 28)

Ведущий 2.

- Средневековая математика подарила нам понятие о "золотом сечении" и последовательности Фибоначчи.

- Золотое сечение - это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему a : b = b : c или с : b = b : а.



- Эта последовательность имеет следующий вид: 1,1,2,3,5,8,13,21,...

- То есть каждое последующее число равно сумме двух предыдущих. При этом в пределе деление каждого числа на предыдущее даёт приблизительно 1,618 - это число и определяет "золотое сечение".

"Золотое сечение" в конструкции Парфенона, Афины, Греция

Собор "Нотредам де Пари" в Париже, Франция

- Золотое сечение (золотая пропорция, деление в крайнем и среднем отношении) — деление непрерывной величины на две части в таком отношении, при котором меньшая часть так относится к большей, как большая ко всей величине.



(слайды 31-34)

Ведущий 1.

Пропорции Фибоначчи в природе

- Еще Гете подчеркивал тенденцию природы к спиральности. Выяснилось, что в расположении листьев на ветке семян подсолнечника, шишек сосны проявляет себя ряд Фибоначчи, а стало быть, проявляет себя закон золотого сечения. Паук плетет паутину спиралеобразно. Спиралью закручивается ураган. Испуганное стадо северных оленей разбегается по спирали. Молекула ДНK закручена двойной спиралью. Гете называл спираль "кривой жизни".

- В биологических исследованиях 70-90 гг. показано, что, начиная с вирусов и растений и кончая организмом человека, всюду выявляется золотая пропорция, характеризующая соразмерность и гармоничность их строения. Золотое сечение признано универсальным законом живых систем.



- Закономерности золотой симметрии проявляются в энергетических переходах элементарных частиц, в строении некоторых химических соединений, в планетарных и космических системах, в генных структурах живых организмов. Эти закономерности есть в строении отдельных органов человека и тела в целом.

Учитель.

- Математик так же, как художник или поэт, создаёт узоры…



- И завершим нас рассказ словами Жуковского:

В математике есть тоже своя красота, как в живописи и поэзии. Эта красота проявляется иногда в отчетливых, ярко очертанных идеях, где на виду всякая деталь умозаключения, а иногда поражает она нас в широких замыслах, скрывающих в себе кое-что недосказанное, но многообещающее.

Просмотр содержимого презентации
«Krasota_matematika»

Математика владеет не только истиной, но и высшей красотой. В математике есть своя красота, как в живописи и поэзии. (Н.Е. Жуковский) Автор: учитель физики и информатики Александрова З.В., МОУ СОШ №5 п.Печенга, Мурманская обл., 2010 г.

Математика владеет не только истиной, но и высшей красотой.

В математике есть своя красота, как в живописи и поэзии.

(Н.Е. Жуковский)

Автор: учитель физики и информатики Александрова З.В.,

МОУ СОШ №5 п.Печенга, Мурманская обл., 2010 г.

Математика – царица всех наук, символ мудрости. Красота математики среди наук недосягаема, а красота является одним из связующих звеньев науки и искусства.  Это не только стройная система законов, но и уникальное средство познания красоты. «Математика есть прообраз красоты мира» (В.Гейзенберг)

Математика – царица всех наук, символ мудрости. Красота математики среди наук недосягаема, а красота является одним из связующих звеньев науки и искусства.

Это не только стройная система законов, но и уникальное средство познания красоты.

«Математика есть прообраз красоты мира»

(В.Гейзенберг)

Люди придумали цифры и действия с ними, а потом в них же открыли множество законов, правил и теорем.      В жизни цифр, линий, углов и бесконечно малых величин можно увидеть много красивого – изящные теоремы, тела, поверхности, даже условия задач. Числа живут своей жизнью, и мы, соприкоснувшись с ней, удивляемся, а иногда и любуемся ею.

Люди придумали цифры и действия с ними, а потом в них же открыли множество законов, правил и теорем.

В жизни цифр, линий, углов и бесконечно малых величин можно увидеть много красивого – изящные теоремы, тела, поверхности, даже условия задач.

Числа живут своей жизнью, и мы, соприкоснувшись с ней, удивляемся, а иногда и любуемся ею.

Математическая пирамида №1 1 x 8 + 1 = 9  12 x 8 + 2 = 9 8  123 x 8 + 3 = 9 8 7  1234 x 8 + 4 = 9 8 7 6   12345  x 8 + 5 = 9 8 7  6 5  123456 x 8 + 6 = 9 8 7 6 5 4  1234567 x 8 + 7 = 9 8 7 6 5 4 3  12345678 x 8 + 8 = 9 8 7 6 5 4 3 2  123456789 x 8 + 9 = 9 8 7 6 5 4 3 2 1 Какие вычисления будут выполнены в следующей строке и в последующих? Математика - это красота и чудо в чистом виде. 4

Математическая пирамида №1

1 x 8 + 1 = 9 12 x 8 + 2 = 9 8 123 x 8 + 3 = 9 8 7 1234 x 8 + 4 = 9 8 7 6 12345 x 8 + 5 = 9 8 7 6 5 123456 x 8 + 6 = 9 8 7 6 5 4 1234567 x 8 + 7 = 9 8 7 6 5 4 3 12345678 x 8 + 8 = 9 8 7 6 5 4 3 2 123456789 x 8 + 9 = 9 8 7 6 5 4 3 2 1

Какие вычисления будут выполнены в следующей строке и в последующих?

Математика - это красота и чудо в чистом виде.

4

Математическая пирамида №2  1 x 9 + 2 = 11  12 x 9 + 3 = 111  123 x 9 + 4 = 1111  1234 x 9 + 5 = 11111  12345 x 9 + 6 = 111111  123456 x 9 + 7 = 1111111  1234567 x 9 + 8 = 11111111  12345678 x 9 + 9 = 111111111  123456789 x 9 +10= 1111111111 Какие вычисления будут выполнены в следующей строке и в последующих? Математика - это единственная наука, которая имеет дело с абсолютным идеалом.

Математическая пирамида №2

1 x 9 + 2 = 11 12 x 9 + 3 = 111 123 x 9 + 4 = 1111 1234 x 9 + 5 = 11111 12345 x 9 + 6 = 111111 123456 x 9 + 7 = 1111111 1234567 x 9 + 8 = 11111111 12345678 x 9 + 9 = 111111111 123456789 x 9 +10= 1111111111

Какие вычисления будут выполнены в следующей строке и в последующих?

Математика - это единственная наука, которая имеет дело с абсолютным идеалом.

Математическая пирамида №3 9 x 9 + 7 = 88  98 x 9 + 6 = 888  987 x 9 + 5 = 8888  9876 x 9 + 4 = 88888  98765 x 9 + 3 = 888888  987654 x 9 + 2 = 8888888  9876543 x 9 + 1 = 88888888  98765432 x 9 + 0 = 888888888 Какие вычисления будут выполнены в следующей строке и в последующих? Замечательно! Не правда ли? 6

Математическая пирамида №3

9 x 9 + 7 = 88 98 x 9 + 6 = 888 987 x 9 + 5 = 8888 9876 x 9 + 4 = 88888 98765 x 9 + 3 = 888888 987654 x 9 + 2 = 8888888 9876543 x 9 + 1 = 88888888 98765432 x 9 + 0 = 888888888

Какие вычисления будут выполнены в следующей строке и в последующих?

Замечательно! Не правда ли?

6

Математическая пирамида №4 1 x 1 = 1  11 x 11 = 121  111 x 111 = 1 2 3 2 1  1111 x 1111 = 1 23 4 32 1  11111 x 11111 = 1 234 5 432 1  111111 x 111111 = 1 2345 6 5432 1  1111111 x 1111111 = 1 23456 7 65432 1  11111111 x 11111111 = 1 234567 8 765432 1  111111111 x 111111111 = 1 2345678 9 8765432 1 Какие вычисления будут выполнены в следующей строке и в последующих? Математика в своей сущности достаточно таинственна и романтична.

Математическая пирамида №4

1 x 1 = 1 11 x 11 = 121 111 x 111 = 1 2 3 2 1 1111 x 1111 = 1 23 4 32 1 11111 x 11111 = 1 234 5 432 1 111111 x 111111 = 1 2345 6 5432 1 1111111 x 1111111 = 1 23456 7 65432 1 11111111 x 11111111 = 1 234567 8 765432 1 111111111 x 111111111 = 1 2345678 9 8765432 1

Какие вычисления будут выполнены в следующей строке и в последующих?

Математика в своей сущности достаточно таинственна и романтична.

Это интересно

Это интересно

Поверхности второго порядка. Загадочная красота. эллипсоид гиперболический параболоид эллиптический параболоид двуполостный гиперболоид

Поверхности второго порядка. Загадочная красота.

эллипсоид

гиперболический параболоид

эллиптический параболоид

двуполостный гиперболоид

Симметрия - закономерное расположение элементов формы относительно плоскости, оси или точки. Человек давно осмыслил симметрию в творениях природы и стал использовать се как средство организации искусственных форм. В Древней Греции слово

Симметрия - закономерное расположение элементов формы относительно плоскости, оси или точки. Человек давно осмыслил симметрию в творениях природы и стал использовать се как средство организации искусственных форм. В Древней Греции слово "симметрия" было синонимом красоты, гармонии формы.

«...быть прекрасным значит быть симметричным и соразмерным» (Платон)

Тадж-Махал — мавзолей-мечеть, находящийся в Агре, Индия, на берегу реки Ямуна. Усыпальница имеет центральную симметрию относительно гробницы Мумтаз-Махал. Единственным нарушением этой симметрии является гробница Шах-Джахана, которую там соорудили после его смерти.

Тадж-Махал — мавзолей-мечеть, находящийся в Агре, Индия, на берегу реки Ямуна. Усыпальница имеет центральную симметрию относительно гробницы Мумтаз-Махал. Единственным нарушением этой симметрии является гробница Шах-Джахана, которую там соорудили после его смерти.

Особенно блистательно использовали симметрию в архитектурных сооружениях древние зодчие. Древнегреческие архитекторы были убеждены, что в своих произведениях они руководствуются законами, которые управляют природой. Выбирая симметричные формы, художник тем самым выражал свое понимание природной гармонии как устойчивости, спокойствия и равновесия.

Особенно блистательно использовали симметрию в архитектурных сооружениях древние зодчие. Древнегреческие архитекторы были убеждены, что в своих произведениях они руководствуются законами, которые управляют природой. Выбирая симметричные формы, художник тем самым выражал свое понимание природной гармонии как устойчивости, спокойствия и равновесия.

Зеркальная симметрия Если преобразование симметрии относительно плоскости переводит фигуру в себя, то фигура называется симметричной относительно плоскости, а данная плоскость – плоскостью симметрии этой фигуры. В некоторых источниках такую симметрию называют зеркальной. А зеркало не просто копирует объект, но и меняет местами передние и задние по отношению к зеркалу части объекта.

Зеркальная симметрия

Если преобразование симметрии относительно плоскости переводит фигуру в себя, то фигура называется симметричной относительно плоскости, а данная плоскость – плоскостью симметрии этой фигуры. В некоторых источниках такую симметрию называют зеркальной. А зеркало не просто копирует объект, но и меняет местами передние и задние по отношению к зеркалу части объекта.

Симметрия в природе  Симметрия широко распространена в природе. Ее можно наблюдать в форме листьев и цветов растений, в расположении различных органов животных.

Симметрия в природе

Симметрия широко распространена в природе. Ее можно наблюдать в форме листьев и цветов растений, в расположении различных органов животных.

Симметрия в природе  Красота растений привлекала внимание математиков веками. Активнее всего изучались интересные геометрические свойства растений, такие как симметрия листьев относительно центральной оси, радиальная симметрия цветов, и спиральное расположение семечек в шишках. Красота связана с симметрией . Рассматривая расположение листьев на ветке дерева, видим, что один лист не только отстоит от другого , но и повёрнут вокруг оси ствола. Листья располагаются на стволе по винтовой линии (принцип винтовой симметрии). Семена подсолнечника располагаются по спиралям, опять же по принципу симметрии.

Симметрия в природе

Красота растений привлекала внимание математиков веками. Активнее всего изучались интересные геометрические свойства растений, такие как симметрия листьев относительно центральной оси, радиальная симметрия цветов, и спиральное расположение семечек в шишках. Красота связана с симметрией .

Рассматривая расположение листьев на ветке дерева, видим, что один лист не только отстоит от другого , но и повёрнут вокруг оси ствола. Листья располагаются на стволе по винтовой линии (принцип винтовой симметрии). Семена подсолнечника располагаются по спиралям, опять же по принципу симметрии.

Симметрия в неживой природе В мир неживой природы очарование симметрии вносят кристаллы. Каждая снежинка- это маленький кристалл замерзшей воды. Форма снежинок может быть очень разнообразной, но все они обладают симметрией - поворотной симметрией 6-го порядка и, кроме того, зеркальной симметрией.

Симметрия в неживой природе

В мир неживой природы очарование симметрии вносят кристаллы. Каждая снежинка- это маленький кристалл замерзшей воды. Форма снежинок может быть очень разнообразной, но все они обладают симметрией - поворотной симметрией 6-го порядка и, кроме того, зеркальной симметрией.

О, симметрия! Гимн тебе пою!  Тебя повсюду в мире узнаю.  Ты в Эйфелевой башне, в малой мошке,  Ты в елочке, что у лесной дорожки.  С тобою в дружбе и тюльпан, и роза,  И снежный рой – творение мороза! Симметрия является фундаментальным свойством природы, представление о котором слагалось в течение десятков, сотен, тысяч поколений.

О, симметрия! Гимн тебе пою!

Тебя повсюду в мире узнаю.

Ты в Эйфелевой башне, в малой мошке,

Ты в елочке, что у лесной дорожки.

С тобою в дружбе и тюльпан, и роза,

И снежный рой – творение мороза!

Симметрия является фундаментальным свойством природы, представление о котором слагалось в течение десятков, сотен, тысяч поколений.

Аристид Линденмайер В 1968г. Венгерский биолог и ботаник Аристид Линденмайер (Aristid Lindenmayer) предложил математическую модель для изучения развития простых многоклеточных организмов, которая позже была расширена и используется для моделирования сложных ветвящихся структур — разнообразных деревьев и цветов.

Аристид Линденмайер

В 1968г. Венгерский биолог и ботаник Аристид Линденмайер (Aristid Lindenmayer) предложил математическую модель для изучения развития простых многоклеточных организмов, которая позже была расширена и используется для моделирования сложных ветвящихся структур — разнообразных деревьев и цветов.

R ewriting R ewriting — это способ получения сложных объектов путем замены частей простого начального объекта по некоторым правилам. Классическим примером является снежинка. На рисунке initiator — это начальный объект, грани которого заменяются на generator. Далее с новым объектом проделывается то же самое.

R ewriting

R ewriting — это способ получения сложных объектов путем замены частей простого начального объекта по некоторым правилам. Классическим примером является снежинка. На рисунке initiator — это начальный объект, грани которого заменяются на generator. Далее с новым объектом проделывается то же самое.

Замощение Пенроуза Его красота в непериодичности. Любой сколь угодно большой фрагмент узора повторяется бесконечное число раз, однако, нет таких двух точек где узор наложился бы сам на себя полностью (как не крути).

Замощение Пенроуза

Его красота в непериодичности. Любой сколь угодно большой фрагмент узора повторяется бесконечное число раз, однако, нет таких двух точек где узор наложился бы сам на себя полностью (как не крути).

Дерево Пифагора Пифагор, доказывая свою знаменитую теорему, построил фигуру, где на сторонах прямоугольного треугольника расположены квадраты. В наш век эта фигура Пифагора выросла в целое дерево. Впервые дерево Пифагора построил А. Е. Босман (1891—1961) во время второй мировой войны, используя обычную чертёжную линейку. Одним из свойств дерева Пифагора является то, что, если площадь первого квадрата равна единице, то на каждом уровне сумма площадей квадратов тоже будет равна единице.

Дерево Пифагора

Пифагор, доказывая свою знаменитую теорему, построил фигуру, где на сторонах прямоугольного треугольника расположены квадраты. В наш век эта фигура Пифагора выросла в целое дерево.

Впервые дерево Пифагора построил А. Е. Босман (1891—1961) во время второй мировой войны, используя обычную чертёжную линейку.

Одним из свойств дерева Пифагора является то, что, если площадь первого квадрата равна единице, то на каждом уровне сумма площадей квадратов тоже будет равна единице.

Обнаженное дерево Пифагора Классическое дерево Пифагора Если изображать только отрезки, соединяющие каким-либо образом выбранные

Обнаженное дерево Пифагора

Классическое дерево Пифагора

Если изображать только отрезки, соединяющие каким-либо образом выбранные "центры" треугольников, то получается обнаженное дерево Пифагора.

Обдуваемое ветром дерево Пифагора Если в классическом дереве Пифагора угол равен 45 градусам, то также можно построить и обобщённое дерево Пифагора при использовании других углов. Такое дерево часто называют обдуваемое ветром дерево Пифагора.

Обдуваемое ветром дерево Пифагора

Если в классическом дереве Пифагора угол равен 45 градусам, то также можно построить и обобщённое дерево Пифагора при использовании других углов. Такое дерево часто называют обдуваемое ветром дерево Пифагора.

Гипножаба 24

Гипножаба

24

История Красота есть истина, а истина — красота. Джон Китс Первые примеры самоподобных множеств с необычными свойствами появились в XIX веке (например, множество Кантора). Термин «фрактал» был введён Бенуа Мандельбротом в 1975 году и получил широкую популярность с выходом в 1977 году его книги «Фрактальная геометрия природы». Определение фрактала, данное Мандельбротом, звучит так:

История

Красота есть истина, а истина — красота.

Джон Китс

Первые примеры самоподобных множеств с необычными свойствами появились в XIX веке (например, множество Кантора). Термин «фрактал» был введён Бенуа Мандельбротом в 1975 году и получил широкую популярность с выходом в 1977 году его книги «Фрактальная геометрия природы». Определение фрактала, данное Мандельбротом, звучит так: "Фракталом называется структура, состоящая из частей, которые в каком-то смысле подобны целому"

Галерея изображений фракталов Они кажутся более живыми и красивыми, чем многие рисунки, несмотря на то, что являются результатом работы программы.

Галерея изображений фракталов

Они кажутся более живыми и красивыми, чем многие рисунки, несмотря на то, что являются результатом работы программы.

Математическая музыка Пифагор создал свою школу мудрости, положив в ее основу два искусства - музыку и математику. Он считал, что гармония чисел сродни гармонии звуков и что оба этих занятия упорядочивают хаотичность мышления и дополняют друг друга. Пифагор говорил своим ученикам, что числа правят миром. Математика и музыка - два полюса человеческой культуры. Слушая музыку, мы попадаем в волшебный мир звуков. Решая задачи, погружаемся в строгое пространство чисел. И не задумываемся о том, что мир звуков и пространство чисел издавна соседствуют друг с другом. Дроби широко используются в музыке для обозначения длительностей нот.

Математическая музыка

Пифагор создал свою школу мудрости, положив в ее основу два искусства - музыку и математику. Он считал, что гармония чисел сродни гармонии звуков и что оба этих занятия упорядочивают хаотичность мышления и дополняют друг друга. Пифагор говорил своим ученикам, что числа правят миром.

Математика и музыка - два полюса человеческой культуры. Слушая музыку, мы попадаем в волшебный мир звуков. Решая задачи, погружаемся в строгое пространство чисел. И не задумываемся о том, что мир звуков и пространство чисел издавна соседствуют друг с другом.

Дроби широко используются в музыке для обозначения длительностей нот.

Золотое сечение Средневековая математика подарила нам понятие о

Золотое сечение

Средневековая математика подарила нам понятие о "золотом сечении" и последовательности Фибоначчи.

Золотое сечение - это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему a : b = b : c или с : b = b : а.

Эта последовательность имеет следующий вид: 1,1,2,3,5,8,13,21,...

То есть каждое последующее число равно сумме двух предыдущих. При этом в пределе деление каждого числа на предыдущее даёт приблизительно 1,618 - это число и определяет "золотое сечение".

Золотое сечение

Золотое сечение

"Золотое сечение" в конструкции Парфенона, Афины, Греция

Собор "Нотредам де Пари" в Париже, Франция

Золотое сечение (золотая пропорция, деление в крайнем и среднем отношении) — деление непрерывной величины на две части в таком отношении, при котором меньшая часть так относится к большей, как большая ко всей величине.

Пирамида Хеопса, Египет

Пирамида Хеопса, Египет

Пропорции Фибоначчи в природе Еще Гете подчеркивал тенденцию природы к спиральности. Выяснилось, что в расположении листьев на ветке семян подсолнечника, шишек сосны проявляет себя ряд Фибоначчи, а стало быть, проявляет себя закон золотого сечения. Паук плетет паутину спиралеобразно. Спиралью закручивается ураган. Испуганное стадо северных оленей разбегается по спирали. Молекула ДНK закручена двойной спиралью. Гете называл спираль

Пропорции Фибоначчи в природе

Еще Гете подчеркивал тенденцию природы к спиральности. Выяснилось, что в расположении листьев на ветке семян подсолнечника, шишек сосны проявляет себя ряд Фибоначчи, а стало быть, проявляет себя закон золотого сечения. Паук плетет паутину спиралеобразно. Спиралью закручивается ураган. Испуганное стадо северных оленей разбегается по спирали. Молекула ДНK закручена двойной спиралью. Гете называл спираль "кривой жизни".

Золотое сечение В биологических исследованиях 70-90 гг. показано, что, начиная с вирусов и растений и кончая организмом человека, всюду выявляется золотая пропорция, характеризующая соразмерность и гармоничность их строения. Золотое сечение признано универсальным законом живых систем.

Золотое сечение

В биологических исследованиях 70-90 гг. показано, что, начиная с вирусов и растений и кончая организмом человека, всюду выявляется золотая пропорция, характеризующая соразмерность и гармоничность их строения. Золотое сечение признано универсальным законом живых систем.

Золотое сечение в живописи 33

Золотое сечение в живописи

33

Золотое сечение Закономерности золотой симметрии проявляются в энергетических переходах элементарных частиц, в строении некоторых химических соединений, в планетарных и космических системах, в генных структурах живых организмов. Эти закономерности есть в строении отдельных органов человека и тела в целом.

Золотое сечение

Закономерности золотой симметрии проявляются в энергетических переходах элементарных частиц, в строении некоторых химических соединений, в планетарных и космических системах, в генных структурах живых организмов. Эти закономерности есть в строении отдельных органов человека и тела в целом.

Математик так же, как художник или поэт, создаёт узоры… В математике есть тоже своя красота, как в живописи и поэзии. Эта красота проявляется иногда в отчетливых, ярко очертанных идеях, где на виду всякая деталь умозаключения, а иногда поражает она нас в широких замыслах, скрывающих в себе кое-что недосказанное, но многообещающее. (Н.Е. Жуковский )

Математик так же, как художник или поэт, создаёт узоры…

В математике есть тоже своя красота, как в живописи и поэзии. Эта красота проявляется иногда в отчетливых, ярко очертанных идеях, где на виду всякая деталь умозаключения, а иногда поражает она нас в широких замыслах, скрывающих в себе кое-что недосказанное, но многообещающее. (Н.Е. Жуковский )

Автор: учитель физики и информатики Александрова З.В., МОУ СОШ №5 п.Печенга, Мурманская обл., 2010 г. Спасибо за внимание! Использованные ресурсы: http://mcs.open.ac.uk/ugg2/jpg/med_RS_0065.jpg http://en.wikipedia.org/wiki/Penrose_tiling http://habrahabr.ru/blogs/biotech/69989 http://ru.wikipedia.org/wiki/ Фрактал http://fractals.narod.ru/intro.htm http://www.wack.ch/frac/gallery.html http://www.ug.ru/issue/?action=topic&toid=8652 http://www.mathematics.ru/ «Математика и искусство», А. В. Волошинов, Москва, “Просвещение”, 2000г. «Математическое путешествие в мир гармонии», Е.С.Смирнова, Н.А. Леонидова, журнал «Математика в школе» № 3, 1993г.

Автор: учитель физики и информатики Александрова З.В.,

МОУ СОШ №5 п.Печенга, Мурманская обл., 2010 г.

Спасибо за внимание!

Использованные ресурсы:

http://mcs.open.ac.uk/ugg2/jpg/med_RS_0065.jpg

http://en.wikipedia.org/wiki/Penrose_tiling

http://habrahabr.ru/blogs/biotech/69989

http://ru.wikipedia.org/wiki/ Фрактал

http://fractals.narod.ru/intro.htm

http://www.wack.ch/frac/gallery.html

http://www.ug.ru/issue/?action=topic&toid=8652

http://www.mathematics.ru/

«Математика и искусство», А. В. Волошинов, Москва, “Просвещение”, 2000г.

«Математическое путешествие в мир гармонии», Е.С.Смирнова, Н.А. Леонидова, журнал «Математика в школе» № 3, 1993г.

Просмотр содержимого презентации
«музыка.»

А Т М А И К А М Т Е

А

Т

М

А

И

К

А

М

Т

Е

А Т М А И К А М Т Е

А

Т

М

А

И

К

А

М

Т

Е

А Т М А И К А М Т Е

А

Т

М

А

И

К

А

М

Т

Е