СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Площадь поверхностей тел

Категория: Математика

Нажмите, чтобы узнать подробности

ПЛОЩАДИ ПОВЕРХНОСТИ ТЕЛ

Просмотр содержимого документа
«Площадь поверхностей тел»

Формулы площади поверхности тел

Площадь поверхности геометрической фигуры измеряется в квадратных единицах.  Очень часто используется в повседневной жизни, в строительстве, на производствах.  Например, нужно вам покрасить комнату, зная сколько краски используется на кв. метр,  и площади стен комнаты легко можно вычислить, сколько всего вам нужно купить краски.

Различают два вида площадей поверхности тел: Sбок — площадь боковой поверхности тела, и Р — площадь полной поверхности тела, которая равна сумме площадей боковой поверхности и основания тела.

Формула площади поверхности призмы

Площадь боковой поверхности прямой призмы равна периметру основания умноженному на высоту призмы (высота=боковому ребру).

Sбок = ph=pl

р — периметр основания;

h — высота;

l — боковое ребро.

Формула площади поверхности куба

Площадь боковой поверхности куба равна числу боковых граней умноженному на квадрат ребра.

Sбок = 4a2

Площадь полной поверхности куба равна числу всех граней куба умноженному на квадрат ребра.

P = 6a2

а — ребро куба.





Формула площади поверхности пирамиды

1) Правильная пирамида:

Sбок = 1/2pA

p — периметр основания;

A — апофема.

Sбок = S/cos φ

S — площадь основания;

φ — угол между боковой гранью и основанием пирамиды.

Sбок = Sгр n

Sгр — площадь одной боковой грани;
n — количество боковых граней пирамиды.

2) Правильная усеченная пирамида:

Sбок = 1/2(p1 + p2)A

p1 ,p2 — периметры оснований;

A — апофема.

Р = Sбок + S1 + S2

Р — площадь полной поверхности правильной усеченной пирамиды;

Sбок — площадь боковой поверхности правильной усеченной пирамиды;

S1 + S2 — площади оснований.







Формула площади поверхности цилиндра

Sбок = 2πrh = πdh

P = 2πr2+2πrh = 2π(r+h)

P — площадь полной поверхности цилиндра;

r — радиус цилиндра;

d — диаметр цилиндра;

h — высота цилиндра.

Формула площади поверхности конуса

1) Прямой круговой конус:

Sбок = πrl = 1/2 πdl

P = πr2 + πrl= πr(r+l)

P — площадь полной поверхности конуса;

r -радиус конуса;

d -диаметр конуса;

l — образующая конуса.

2) Усеченный прямой круговой конус:

Sбок = πl(r1 + r2) = 1/2πl(d1 + d2)

P = πl(r1 + r2) + π(r1 + r2)

P — площадь полной поверхности усеченного конуса;

r1, r2 — радиусы оснований усеченного конуса;

d1, d2 — диаметры оснований усеченного конуса;

l — образующая усеченного конуса.

Формула площади поверхности шара (сферы)

Шар — тело, созданное вращением полукруга вокруг диаметра.

Сфера — поверхность шара.

P = 4πR2 = πD2

Формула площади поверхности сферического сегмента

Сферический сегмент — часть сферы, что отсекается от сферы плоскостью.

Sсф. сегм. = 2πRh = π(a2 + h2)

Формула площади поверхности шарового сегмента

Шаровой сегмент — часть шара, что отсекается от шара плоскостью, и ограничивается кругом (основание шарового сегмента) и сферическим сегментом.

Sшар. сегм. = π(2Rh+a2)=π(h2+2a2)

R — радиус шара;

D — диаметр шара;

h — высота сегмента;

a — радиус основания сегмента.







Задачи:


Задание №1. Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 6 и 8, высота призмы равна 10. Найдите площадь ее поверхности.


Задание №2. Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 5 и 12, высота призмы равна 8. Найдите площадь ее поверхности.


Задание №3. Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 7 и 24, высота призмы равна 15. Найдите площадь ее поверхности.


Задание №4.Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 3 и 4, высота призмы равна 8. Найдите площадь ее поверхности.


Задание №5. Найдите площадь поверхности правильной четырехугольной пирамиды,  стороны основания которой равны 48 и высота равна 7.


Задание №6. Найдите площадь поверхности правильной четырехугольной пирамиды, стороны основания которой равны 40 и высота равна 15.


Задание №7 . Найдите площадь поверхности правильной четырехугольной пирамиды,  стороны основания которой равны 80 и высота равна 9..


Задание №8. Найдите площадь поверхности правильной четырехугольной пирамиды, стороны основания которой равны 6 и высота равна 4.


Задание №9. Ящик, имеющий форму куба с ребром 30 см без одной грани, нужно покрасить со всех сторон снаружи. Найдите площадь поверхности, которую необходимо покрасить. Ответ дайте в квадратных сантиметрах.


Задание №10. Ящик, имеющий форму куба с ребром 10 см без одной грани, нужно покрасить со всех сторон снаружи. Найдите площадь поверхности, которую необходимо покрасить. Ответ дайте в квадратных сантиметрах.


Задание №11. Ящик, имеющий форму куба с ребром 20 см без одной грани, нужно покрасить со всех сторон снаружи. Найдите площадь поверхности, которую необходимо покрасить. Ответ дайте в квадратных сантиметрах.