СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до 12.07.2025

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Пособие по теме Строение и развитие Вселенной

Категория: Физика

Нажмите, чтобы узнать подробности

Методическое пособие предназначено для повторения теоретических и практических знаний по теме.

Цель пособия – повторить понятия: Солнечной системы, законов движения планет,  природы планет и малых тел солнечной системы, солнца,  внутреннего строение Солнца и звезд главной последовательности и подготовится к занятию по теме «Строение и развитие Вселенной».

Данное пособие рекомендовано для студентов первого курса специальности 34.02.01 Сестринское дело. Пособие содержит определения основных понятий и законы по теме строение и развитие Вселенной, тест для самоконтроля и ключи к тесту.

Пособие направлено на формирование навыков самостоятельной работы с учебным материалом, формирование навыков решения задач, формирование и развитие творческого потенциала, повышение интереса к дисциплине.

 

 

 

 

 

 

 

 

 

 

 

 

Показать полностью

Просмотр содержимого документа
«Пособие по теме Строение и развитие Вселенной»

ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ НОВОСИБИРСКОЙ ОБЛАСТИ «КУПИНСКИЙ МЕДИЦИНСКИЙ ТЕХНИКУМ»








МЕТОДИЧЕСКОЕ ПОСОБИЕ

Для самостоятельной работы студентов

По дисциплине: ФИЗИКА

Тема: «СТРОЕНИЕ И РАЗВИТИЕ ВСЕЛЕННОЙ»

Специальность: 34.02.01 Сестринское дело Курс: 1

(базовой подготовки)












Купино

2018

Рассмотрено на заседании предметной цикловой

Методической комиссии по общеобразовательным дисциплинам,

общему гуманитарному и социально-экономическому, математическому и

естественно-научному циклу

Протокол № _____ от «_____» _________20____г.








Автор – составитель: преподаватель математики высшей категории Тюменцева О.Н.
















Купино

2018 г

Пояснительная записка к методическому пособию

Методическое пособие предназначено для повторения теоретических и практических знаний по теме.

Цель пособия – повторить понятия: Солнечной системы, законов движения планет, природы планет и малых тел солнечной системы, солнца, внутреннего строение Солнца и звезд главной последовательности и подготовится к занятию по теме «Строение и развитие Вселенной».

Данное пособие рекомендовано для студентов первого курса специальности 34.02.01 Сестринское дело. Пособие содержит определения основных понятий и законы по теме строение и развитие Вселенной, тест для самоконтроля и ключи к тесту.

Пособие направлено на формирование навыков самостоятельной работы с учебным материалом, формирование навыков решения задач, формирование и развитие творческого потенциала, повышение интереса к дисциплине.

















Строение и развитие Вселенной

Видимые движения небесных тел. В этом разделе мы изучим строение Солнечной системы, законы, описывающие движение планет, проявления гравитационного взаимодействия в системе Земля — Луна, физические свойства Солнца и звезд. Используя известные законы физики, заглянем в недра звезд, обсудим их жизнь и смерть. Узнаем, что останется после смерти Солнца и более массивных звезд. Изучение мира галактик позволит нам узнать, как устроен Млечный Путь и где образуются звезды. Мы посмотрим, как наблюдаемое красное смещение в спектрах галактик указывает на расширение Вселенной в целом и что наблюдаемое реликтовое излучение, заполняющее всю Вселенную, указывает на то, что в прошлом Вселенная была не только плотной, но и горячей. Увидим, как знание законов небесной механики позволяет смоделировать движение не только планет, но и искусственных небесных тел. Из текста этой главы мы узнаем, что сложные видимые петлеобразные движения планет среди звезд объясняются движением Земли и планет вокруг Солнца. Узнаем, что сложный характер движения Луны вокруг Земли и Земли вокруг Солнца объясняет смену лунных фаз, явление приливов и отливов, а также закономерности солнечных и лунных затмений. Изучим состав Солнечной системы. Темной ночью мы можем увидеть на небе около 2500 звезд (с учетом невидимого полушария 5000), которые отличаются по блеску и цвету. Кажется, что они прикреплены к небесной сфере и вместе с ней обращаются вокруг Земли. Чтобы ориентироваться среди них, небо разбили на 88 созвездий. Во II в. до н. э. Гиппарх разделил звезды по блеску на звездные величины, самые яркие он отнес к звездам первой величины (1m), а самые слабые, едва видимые невооруженным глазом, — к 6m. В созвездии звезды обозначаются греческими буквами, некоторые самые яркие звезды имеют собственные названия. Так, Полярная звезда — Малой Медведицы имеет блеск 2m. Самая яркая звезда северного неба Вега — Лиры имеет блеск около Оm. Особое место среди созвездий занимали 12 зодиакальных созвездий, через которые проходит годичный путь Солнца — эклиптика. Так, в марте Солнце движется по созвездию Рыб, в мае — Тельца, в августе — Льва, в ноябре — Скорпиона. В настоящее время для ориентации среди звезд астрономы используют различные системы небесных координат. Одна из них — экваториальная система координат (рис. 15.1). В ее основе лежит небесный экватор — проекция земного экватора на небесную сферу. Эклиптика и экватор пересекаются в двух точках: весеннего равноденствия.

Точка весеннего равноденствия находится в созвездии Рыбы, и она служит начальной точкой, от которой в направлении против часовой стрелки отсчитывается координата прямое восхождение, которую обычно обозначают буквой  . Эта координата является аналогом долготы в географических координатах. В астрономии принято прямое восхождение измерять в часовой мере, а не в градусной. При этом исходят из того, что полная окружность составляет 24 ч.

Вторая координата светила — склонение,— является аналогом широты, ее измеряют в градусной мере. Так, звезда Альтаир ( Орла) имеет координаты = 19ч48м18с, склонение =  + 8°44'. Измеренные координаты звезд хранят в каталогах, по ним строят звездные карты, которые используют астрономы при поиске нужных светил.

Взаимное расположение звезд на небе не меняется, они совершают суточное вращение вместе с небесной сферой. Планеты наряду с суточным вращением совершают медленное движение среди звезд, оправдывая свое название (planetas в переводе с греческого — блуждающая звезда).

Видимый путь планет на небе петлеобразен. Размеры описываемых планетами петель различны. На рисунке 15.3 показано видимое петлеобразное движение Марса, которое длится 79 дней.

Наиболее просто видимое движение планет и Солнца описывается в системе отсчета, связанной с Солнцем. Такой подход получил название гелиоцентрической системы мира и был предложен польским астрономом Николаем Коперником (1473—1543).
В этой системе суточное движение небесного свода объясняется вращением Земли вокруг оси, годичное движение Солнца по эклиптике — движением Земли вокруг Солнца, а описываемые планетами петли — сложением движений Земли и планет (см. рис. 15.3). Вокруг Земли движется только Луна. Коперник рассчитал расстояния планет до Солнца.

В астрономии среднее расстояние от Земли до Солнца принято за единицу расстояния и называется астрономической единицей (а. е.), 1 а. е. = 150 • 106 км. Так, Меркурий находится от Земли на расстоянии 0,39 а. е., а Сатурн — на расстоянии 9,54 а. е.

В античные времена и вплоть до Коперника полагали, что в центре Вселенной расположена Земля и все небесные тела обращаются по сложным траекториям вокруг нее. Эта система мира называется геоцентрической системой мира.
Доказательство движения Земли вокруг Солнца и определение расстояний до звезд. Если Земля обращается вокруг Солнца, то близкие звезды должны периодически смещаться на фоне более далеких звезд. Это смещение называется параллактическим, а угол 71, под которым со звезды виден радиус земной орбиты, называется параллаксом. Как видно из рисунка 15.4, расстояние до звезды

В астрономии принято измерять расстояние до звезд в парсеках (пк).
1 пк = 206 265 • ао = 206 265 • 150 • 106 км = 3 • 1013 км.
Итак, если параллакс измерять в угловых секундах, а расстояние до звезды — в парсеках, то связью между ними будет равенство
Только во второй половине XIX в. удалось измерить параллаксы и расстояния до звезд и тем самым подтвердить теорию Коперника наблюдениями. Так, ближайшая к нам звезда Центавра имеет параллакс = 0,751", поэтому расстояние до нее r = 1,33 пк   4 • 1013 км. Для определения положения звезд используются небесные экваториальные координаты. Сложное петлеобразное движение планет объясняется движением Земли и планет вокруг Солнца, а наблюдение годичного параллакса у звезд не только подтверждает обращение Земли вокруг Солнца, но и позволяет определять расстояния до них.

Законы движения планет. В конце XVI в. датский астроном И. Кеплер, изучая движение планет, открыл три закона их движения. На основании этих законов И. Ньютон вывел формулу для закона всемирного тяготения. В дальнейшем, используя законы механики, И. Ньютон решил задачу двух тел — вывел законы, по которым одно тело движется в поле тяготения другого тела. Он получил три обобщенных закона Кеплера.

Первый закон Кеплера. Под действием силы притяжения одно небесное тело движется в поле тяготения другого небесного тела по одному из конических сечений — кругу, эллипсу, параболе или гиперболе (рис. 15.5).

Планеты движутся вокруг Солнца по эллиптической орбите (рис. 15.6). Ближайшая к Солнцу точка орбиты называется перигелием, самая далекая — афелием. Линия, соединяющая какую-либо точку эллипса с фокусом, называется радиус-вектором. Отношение расстояния между фокусами к большой оси (к наибольшему диаметру) называется эксцентриситетом е. Эллипс тем сильнее вытянут, чем больше его эксцентриситет. Большая полуось эллипса а — среднее расстояние планеты до Солнца. По эллиптическим орбитам движутся и кометы и астероиды. У окружности е = 0, у эллипса 0 1 (см. рис. 15.5).

Движение естественных и искусственных спутников вокруг планет, движение одной звезды вокруг другой в двойной системе также подчиняются этому первому обобщенному закону Кеплера.

Второй закон Кеплера. Каждая планета движется так, что радиус-вектор планеты за равные промежутки времени описывает равные площади. Планета проходит путь от точки А до А' и от В до В' (рис. 15.7) за одно и то же время. Другими словами, планета движется быстрее всего в перигелии, а медленнее всего —когда находится на наибольшем удалении (в афелии).

Таким образом, второй закон Кеплера определяет скорость движения планеты. Она тем больше, чем планета ближе к Солнцу. Так, скорость кометы Галлея в перигелии равна 55 км/с, а в афелии  0,9 км/с.

Третий закон Кеплера. Куб большой полуоси орбиты тела, деленный на квадрат периода его обращения и на сумму масс тел, есть величина постоянная.

Если Т — период обращения одного тела вокруг другого тела на среднем расстоянии а, то третий обобщенный закон Кеплера записывается как

a3/[T2 (M1 + М2)] = G/42 ,    (15.2), где M1 и М2 — массы притягивающихся двух тел, а G — гравитационная постоянная. Для Солнечной системы масса Солнца массы любой планеты, и тогда

аЗ/Т2 = GM/42.                    (15.3)
Правая часть уравнения — постоянная для всех тел Солнечной системы, что и утверждает третий закон Кеплера, полученный ученым из наблюдений.

Третий обобщенный закон Кеплера позволяет определять массы планет по движению их спутников, а массы двойных звезд — по элементам их орбит.

Движение планет и других небесных тел вокруг Солнца под действием силы тяготения происходит по трем законам Кеплера. Эти законы позволяют рассчитывать положения планет и определять их массы по движению спутников вокруг них.

Система Земля—Луна. Видимое движение Луны. Луна — ближайшее к Земле небесное тело и ее естественный спутник. Луна делает один оборот вокруг Земли за 27,3 сут. и с таким же периодом вращается вокруг своей оси, поэтому с Земли видно только одно ее полушарие. Обратную сторону Луны впервые удалось увидеть только 7 октября 1959 г., когда советская автоматическая станция «Луна-3» облетела Луну и сфотографировала ее обратную сторону, передав снимки на Землю.
Видимое перемещение Луны происходит неравномерно, потому что Луна движется в пространстве по эллиптической орбите, в одном из фокусов которой находится центр Земли. Большая полуось лунной орбиты а = 384 400 км =, эксцентриситет е - 0,055. Луна, подобно Земле, представляет собой темный непрозрачный шар, светящий отраженным солнечным светом. Солнце всегда освещает примерно половину этого шара, другая половина остается темной. Но так как к Земле обыкновенно бывают обращены и часть светлого видимого полушария, и часть неосвещенного, то Луна большую часть времени кажется нам неполной. Различают четыре основные фазы Луны: новолуние, первая четверть, полнолуние и последняя четверть.

На рисунке 15.8 показаны положения Луны относительно Земли и Солнца для различных фаз.

Интервал времени между двумя последовательными новолуниями, равный 29,5 сут., получил название синодический месяц (период). Синодический месяц лежит в основе лунного календаря.

Солнечные и лунные затмения. Периодически Луна частично или полностью заслоняет Солнце — такое явление называется солнечным затмением, оно может произойти во время новолуний. Когда Луна попадает в тень Земли, наступает лунное затмение, которое может наступить во время полнолуний. Вследствие наклона лунной орбиты к эклиптике эти явления происходят не каждый месяц, а значительно реже. На протяжении календарного года происходят от 2 до 5 солнечных затмений и от 0 до 3 лунных затмений.

Еще древние вавилоняне заметили, что все затмения повторяются в том же порядке примерно через 18 лет и 11 дней. Этот период у древних вавилонян назывался циклом Сароса (в переводе с египетского сарос — повторение), им пользовались для предсказаний затмений.
Приливные явления. Под действием лунного притяжения водная оболочка Земли принимает слегка вытянутую в сторону Луны (и противоположную сторону) форму. Там, где Луна выше всего над горизонтом и где ниже всего под горизонтом, будет прилив. На восходе и заходе Рис. 15.9 Луны будут наблюдаться отливы (рис. 15.9). Действительно, ближайшая к Луне точка А будет испытывать большее притяжение к Луне, чем центр Земли Е и точка С (эти силы отмечены синим цветом). Разница сил между точками А и Е называется приливной силой (отмечена черной стрелкой), и она направлена от центра Земли к Луне. В точке В приливная сила направлена в противоположную сторону от Луны, а в точках С и D приливная сила направлена к центру Земли. Таким образом, вода под действием приливной силы будет оттекать из С и D (отлив) и собираться в А и В (прилив). Во время приливов уровень воды плавно нарастает, достигая наибольшего значения, а затем постепенно снижается до низшего уровня. Вследствие вращения Земли приливные выступы образуются в каждый следующий момент уже в новых точках земной поверхности. Максимумы подъемов воды чередуются через определенные промежутки времени, близкие к 12 ч 26 мин. Таким образом, в каждом месте океанского берега за 24 ч 52 мин бывают два прилива и два отлива. Максимальные приливы бывают, когда Луна находится выше всего над горизонтом и ниже всего под горизонтом. Из-за движения Луны вокруг Земли Луна проходит выше всего над горизонтом как раз через 24 ч 52 мин. Это указывает на взаимосвязь между Луной и приливами. Действительно, явление приливов вызывается притяжением Луны. Солнце, как и Луна, также вызывает приливы. Несмотря на большую удаленность от Земли, но благодаря большой массе Солнца приливы, которые оно вызывает всего в 2,5 раза меньше лунных.

Во время полнолуний и новолуний лунные и солнечные приливы складываются и наблюдаются самые большие приливы. Напротив, когда Луна в первой или последней четверти, во время лунного прилива будет солнечный отлив; действие Солнца вычитается из действия Луны, и приливы бывают существенно меньшими.

Луна движется вокруг Земли по эллиптической орбите. Смена лунных фаз определяется изменением вида освещенной стороны Луны. Движением Луны вокруг Земли объясняются лунные и солнечные затмения. Явление приливов и отливов обусловлено притяжением Луны и большими размерами Земли.

Физическая природа планет и малых тел Солнечной системы. По современным данным, вокруг Солнца обращаются восемь крупных шарообразных тел, называемых планетами (рис. 15.10). Наряду с планетами и их спутниками вокруг Солнца обращаются планеты-карлики, тысячи малых планет, называемых астероидами, а также кометы и частички пыли. Масса Солнца в 740 раз превышает массу всех планет, благодаря этому оно своим сильным гравитационным полем удерживает планеты и около себя. Поверхность Солнца нагрета до температуры около 6000 К, поэтому оно излучает собственный свет, а планеты освещаются Солнцем и светят отраженным светом. Планеты вращаются вокруг Солнца в том же направлении, что и Солнце вокруг своей оси, и удалены от Солнца в следующем порядке: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун (по современным данным Плутон относят к планетам-карликам). Но физическим характеристикам их объединяют в две группы, разграниченные в пространстве поясом астероидов.

Планеты земной группы. Планеты, движутся внутри пояса астероидов (Меркурий, Венера, Земля и Марс), принадлежат к земной группе, так как имеют много общего. Все эти планеты, небольшие по размерам и массе (самая крупная из них — Земля), имеют твердую поверхность, сравнительно высокую среднюю плотность, близкую к плотности Земли (5,5 г/см3), и обладают атмосферами (кроме Меркурия). Планеты земной группы состоят из тяжелых химических элементов.

Наличие атмосферы, содержащей наряду с другими газами углекислый газ, привело к тому, что на поверхности Венеры и Земли действует парниковый эффект. Углекислый газ, а у Земли и водяные пары, пропускают солнечный свет, который нагревает поверхность и атмосферу. Нагретая поверхность испускает инфракрасные лучи, но эти лучи углекислый газ не пропускает наружу в космическое пространство и поверхность

не охлаждается. Тепло скапливается у поверхности. Так, температура поверхности Венеры составляет почти 500 °С. А если бы атмосфера Земли не содержала углекислый газ, то температура на ее поверхности была бы на 40° ниже существующей. Так что без парникового эффекта Земля была бы покрыта льдом.

Планеты-гиганты. Планеты, движущиеся за кольцом астероидов, образуют группу планет-гигантов, возглавляемую Юпитером — самой крупной и массивной планетой Солнечной системы. К этой группе относятся также Сатурн, Уран и Нептун. Они обладают значительными размерами, малой средней плотностью (большая плотность у Нептуна — 1,66 г/см3,   самая   малая   у   Сатурна — 0,7 г/см3), быстрым вращением, протяженными гелиево-водородными атмосферами с небольшим содержанием аммиака и метана и, по-видимому, не имеют твердой поверхности. Планеты-гиганты состоят из легких химических элементов, в основном водорода и гелия. Планеты-гиганты окружены кольца ми, состоящими из мелких твердых частиц. Вокруг планет-гигантов обращаются десятки спутников. Только у Меркурия и Венеры отсутствуют спутники. Крупные спутники (такие, как Луна у Земли или Титан у Сатурна) имеют шарообразную форму, а мелкие (как Фобос и Демос у Марса) — неправильную форму, свойственную большинству астероидов.

Астероиды. Вначале XIX в. между орбитами Марса и Юпитера были обнаружены звездообразные тела — астероиды, которые двигались вокруг Солнца на расстояниях 2,3—3,3 а. е. Астероиды — небольшие бесформенные тела, самый крупный из них — Церера — имеет в поперечнике около 950 км. Сейчас известно несколько тысяч астероидов, некоторые из них имеют орбиты, пересекающие орбиту Земли. Общая масса всех астероидов небольшая, существенно меньше массы любой планеты.

Кометы. Эти небесные светила получили свое название от греческого слова кометас — хвостатая, или косматая, звезда. Яркие кометы появляются сравнительно редко, в среднем одна комета за 10—15 лет. Слабые же по блеску кометы появляются часто (на фотографиях звездного неба ежегодно обнаруживают несколько комет).Большинство комет входят в состав нашей Солнечной системы. Под действием притяжения Солнца они, как и планеты, обращаются вокруг него по вытянутым эллиптическим орбитам (рис. 15.11). Самой известной кометой является комета Галлея (рис. VIII цветной вклейки), названная так в честь первого исследователя комет, который предсказал появление этой кометы. Она движется по очень вытянутой эллиптической орбите (а = 18 а. е. и е = 0,967). В перигелии она сближается с Солнцем до расстояния 0,59 а. е. (заходит внутрь орбиты Венеры), а в афелии удаляется до 35,3 а. е. за орбиту Нептуна. Последний раз комета появилась в 1986 г. В момент ее прохождения вблизи Солнца для ее изучения был осуществлен полет четырех космических аппаратов, два из которых — «Вега-1» и «Вега-2».
Фотографирование ядра кометы Галлея советскими космическими станциями с расстояния около 8000 км показало, что оно имеет неправильную форму с размерами 16x18x8 км (рис. VII цветной вклейки). В следующий раз ее можно будет увидеть в 2062 году. На больших расстояниях от Солнца кометы представляют собой глыбы твердого вещества из льда, застывших газов и пыли, вмороженных частиц метеорного вещества. При приближении к Солнцу лед начинает таять и испаряться, вокруг ядра кометы, начальные размеры которого не превышают десятков километров, образуется протяженная оболочка — кома. Под действием давления солнечного света и солнечного ветра часть газов комы отталкивается в сторону, противоположную Солнцу, образуя хвост кометы. Массы комет оцениваются в 1015—1018 кг.

В конце концов, комета теряет вещество и распадается на части.

Метеоры и метеориты. Метеоры (от греческого слова метеорос — парящий в воздухе) — это вспыхивающие в земной атмосфере мельчайшие твердые частицы, которые вторгаются в нее извне с огромной скоростью. Метеоры часто называют падающими звездами. В межпланетном пространстве хаотично движется с различными скоростями множество таких частиц. Массы подавляющего их большинства измеряются десятыми и тысячными долями грамма, в редких случаях — несколькими граммами. Если в атмосферу влетает частица со скоростью свыше 30 км/с, то из-за трения о воздух она быстро раскаляется, вспыхивает и порождает метеор. Чем больше масса и скорость частицы, тем ярче метеорная вспышка. В среднем по всему небу за 1 ч появляются 5—6 ярких метеоров.

Помимо отдельных метеорных частиц вокруг (Солнца движутся целые их рои, называемые метеорными потоками. Они порождены распадающимися или уже распавшимися кометами. Каждый метеорный рой обращается вокруг Солнца с постоянным периодом, равным периоду обращения породившей его кометы, и многие из них в определенные дни года встречаются с Землей. В эти дни количество метеоров значительно возрастает, а если метеорный рой компактный, то наблюдаются метеорные или звездные дожди, когда в одной ограниченной области неба за одну минуту вспыхивают сотни метеоров.

Многие метеорные потоки связаны с кометами. Так, метеорный поток, исходящий из созвездия Орионана  (Ориониды), связан с кометой Галлея, а метеорный поток Андромениды — с распавшейся кометой Биэлы.

Помимо пыли, в межпланетном пространстве движется множество твердых тел размерами от сантиметров до десятков метров. При падении на Землю они получают название метеоритов. По химическому составу метеориты подразделяют на три группы: каменные, железокаменные и железные. Самый крупный железный метеорит — Гоба — найден на территории Намибии: он имеет размеры 3x3x1 м, а массу — 60 т.

На месте падения крупных метеоритов образуются метеоритные кратеры значительных размеров. Такие кратеры обнаружены в Аризоне (США), Канаде, на Таймыре (Россия) и в других местах. У Аризонского метеоритного кратера диаметр 1207 м, глубина 174 м, а высота окружающего его вала составляет от 40 до 50 м.

На других планетах и их спутниках также обнаружены кратеры метеоритного происхождения. Крупные метеориты могут образовать кратеры диаметром в несколько десятков километров.

Вокруг Солнца обращаются две группы больших планет: планеты земной группы, похожие на Землю, и планеты-гиганты, похожие на Юпитер. Между орбитами Марса и Юпитера расположен пояс астероидов. Кометы движутся вокруг Солнца по очень вытянутым орбитам, при движении вблизи Солнца у кометы образуется хвост.

Солнце. Основные характеристики Солнца. Солнце — лишь одна из бесчисленного множества звезд, существующих в природе. Благодаря близости Земли к Солнцу мы имеем возможность изучать происходящие на нем процессы и по ним судить об аналогичных процессах в звездах, непосредственно не видимых из-за колоссального их удаления.

Шарообразное Солнце представляется нам светящимся диском. Видимая поверхность Солнца называется фотосферой, ее радиус считается радиусом Солнца. На среднем расстоянии от Солнца до Земли (а0 = 1 а. е.), угол, под которым виден радиус фотосферы = 16', поэтому линейный радиус Солнца R = а0 • sin = 1,5 • 108 км • 0,00465 = 700 000 км, что в 109 раз превышает радиус Земли.
Масса Солнца определяется по движению Земли вокруг Солнца и третьему обобщенному закону Кеплера, согласно которому (если пренебречь массой планеты по сравнению с массой Солнца М)

В этой формуле а = а0,  G = 6,67 • 10-11 м3/кг • c2 — гравитационная постоянная, Т = T0 = 365,25 сут. — период обращения Земли вокруг Солнца. Так как 1 сут. 1440 мин = 86 400 с, то Т0 = 365,25 • 86 400 = 3,2 • 107 с.

Ускорение свободного падения на поверхности Солнца в 28 раз больше, чем на поверхности Земли, и равно 274 м/с2.

На фотографических снимках Солнца часто видны темные пятна, возникающие в его фотосфере. Если и течение нескольких дней следить за пятнами, то можно заметить их перемещение, что указывает на вращение солнца вокруг оси. Такие наблюдения показали, что солнце вращается не как твердое тело. Период его обращения вокруг оси вблизи экватора составляет 25 сут., а вблизи полюса — 30 сут. Линейная скорость вращения Солнца на экваторе составляет 2 км/с.

Измерение освещенности, которую создает Солнце на Земле, показало, что на земную поверхность площадью в 1 м2, расположенную перпендикулярно к солнечным лучам, ежесекундно поступает от Солнца энергия, равная 1370 Дж. Эта величина получила название солнечной постоянной E = 1,37 кВт/м2. По ней нетрудно рассчитать светимость Солнца L, или мощность солнечного излучения — энергию, излучаемую Солнцем за 1 с. со всей его поверхности. Для этого достаточно умножить солнечную постоянную на площадь поверхности сферы, в центре которой находится Солнце, радиус которой равен расстоянию от Земли до Солнца а0  = 1,5 • 1011 м. Так как площадь поверхности сферы радиусом а0 равна S = 4R2, где = 3,14, то светимость Солнца
 На долю Земли приходится всего лишь одна двухсотмиллиардная доля энергии, излучаемой Солнцем, но и ее достаточно для расцвета и многообразия жизни на нашей планете. Судить о температуре Солнца (и звезд) мы можем только по его (их) излучению. Солнце является источником излучения различных длин волн — от длинноволнового радио- до коротковолнового рентгеновского и гамма-излучения. На рисунке XIII цветной вклейки показан наблюдаемый спектр Солнца в видимом диапазоне длин волн, полученный с помощью спектрографа. На нем мы видим, что на фоне непрерывного спектра (цветная радуга) видны линии поглощения различных химических элементов.

По наличию спектральных линий астрономы определяют химический состав Солнца. Оказалось, что Солнце почти на 71% состоит из водорода, 27% составляет гелий, на остальные химические элементы приходится около 2% массы.

Астрономы предполагают, что излучение Солнца близко по своим характеристикам к излучению абсолютно черного тела, законы излучения которого хорошо известны.

Согласно закону Вина длина волны, на которую приходится максимум излучения нагретого тела max, связана с температурой Т формулой

Желтый цвет Солнца указывает на то, что максимум его излучения приходится на длину волны max = 4,8 • 10-7м,  следовательно, температура Солнца должна быть
 

Строение солнечной атмосферы. Все виды излучений, которые мы воспринимаем от Солнца, образуются в его самых верхних слоях, в атмосфере. Самый глубокий и плотный слой атмосферы — фотосфера — имеет толщину около 200 км, плотность вещества в ней составляет 10-5кг/м3, что значительно меньше плотности земной атмосферы. Несмотря на малое значение толщины и плотности, фотосфера непрозрачна для всех видов излучений, образующихся в более глубоких слоях Солнца, поэтому мы не можем заглянуть в его под фотосферные слои.

В фотосфере видна зернистая структура, получившая название грануляции. Таким образом, грануляция на Солнце указывает на то, что энергия в фотосферу поступает из более глубоких и горячих слоев Солнца путем конвекции.

На ярком фоне фотосферы наблюдаются темные пятна. Па рисунке VI цветной вклейки показан участок фотосферы с пятном. Размеры солнечных пятен могут превышать 10 000 км! Такие крупные пятна хорошо видны даже невооруженным глазом (конечно, только сквозь темный светофильтр). На фоне ослепительно яркой фотосферы пятно кажется нам черным. Однако измерения показали, что яркость пятен в 5—10 раз меньше яркости окружающей фотосферы, а их реальный цвет — красноватый. По этим измерениям оказалось, что температура пятен около 4000 К.

Наблюдения показали наличие сильного магнитного поля в пятнах. В некоторых пятнах магнитная индукция достигает 0,5 Тл, в то время как в среднем в фотосфере она составляет 10-4—10-5 Тл. На рисунке IX цветной вклейки показана фотография Солнца, полученная во время полного солнечного затмения. На снимке хорошо видна внешняя часть солнечной атмосферы — корона, имеющая вид лучистого жемчужного сияния, яркость которого в миллион раз меньше яркости фотосферы. Солнечная корона прослеживается до расстояний в десять и более радиусов Солнца.

Солнечная корона нагрета до температуры около 2 • 106 К. При такой температуре вещество короны представляет собой полностью ионизованную плазму, излучающую в рентгеновском диапазоне. И действительно, при наблюдениях в рентгеновские телескопы, которые установлены на космических астрономических обсерваториях за пределами земной атмосферы, солнечная корона представляется в полной красе, в то время как поверхность Солнца (фотосфера) практически не видна.

Во время полных солнечных затмений на краю Солнца, во внутренних слоях солнечной короны, наблюдаются протуберанцы — струи горячего вещества, имеющие вид выступов и фонтанов. Некоторые из них — спокойные протуберанцы — в течение многих часов висят над солнечной поверхностью, другие — эруптивные (взрывные) — внезапно с огромной скоростью взлетают над поверхностью, быстро поднимаются до высоты в десятки и даже сотни тысяч километров и так же быстро падают вниз.

Из короны в межпланетное пространство истекает непрерывный поток частиц (протонов, ядер гелия, ионов, электронов), называемый солнечным ветром. Частицы солнечного ветра покидают солнечную корону со скоростью около 800 км/с, поэтому солнечное притяжение не может их удержать. Вблизи Земли скорость солнечного ветра достигает 500 км/с. Солнечная активность. Количество солнечных пятен меняется с периодом около 11 лет. На рисунке 16.1 показано наблюдаемое изменение числа пятен на Солнце с начала XVII в. Когда наблюдается максимальное число пятен, то говорят о максимуме солнечной активности. В годы максимума солнечной активности значительно возрастает число мощных протуберанцев, в такт с солнечной активностью меняется и форма солнечной короны. Одним из самых значительных проявлений солнечной активности являются солнечные вспышки, во время которых выделяется колоссальная энергия — в течение десятка минут выделяется энергия до 1025Дж. Наблюдения со спутников установили, что во время солнечных вспышек происходит резкое увеличение ультрафиолетового излучения, появляется мощное рентгеновское и гамма-излучение. Датчики быстрых заряженных частиц, установленные на искусственных спутниках, показали, что при мощных солнечных вспышках в межпланетное пространство выбрасываются с огромными скоростями, иногда доходящими до 100 000 км/с, мириады частиц, обладающих большой кинетической энергией и получивших название солнечных космических лучей. Их основной состав ядра атомов водорода, гелия, а также электроны.

Вспышки и другие проявления солнечной активности оказывают значительное влияние на физические условия в земной атмосфере и околоземном космическом пространстве и, как следствие, на биологические явления.

Астрономы не только взвесили Солнце, но и измерили температуру его поверхности и светимость. Наземные и космические исследования позволили изучить солнечную атмосферу и обнаружить проявления солнечной активности.
Основные характеристики звезд. Диаграмма «спектр — светимость». Как и Солнце, звезды освещают Землю, но из-за огромного расстояния до них освещенность, которую они создают на Земле, на много порядков меньше солнечной. По этой причине и возникают технические проблемы при измерениях освещенности от звезд. Астрономы строят гигантские телескопы, чтобы уловить слабые излучения звезд. Чем больше диаметр объектива телескопа, тем более слабые звезды можно с их помощью исследовать. Измерения показали, что, например. Полярная звезда создает освещенность на поверхности Земли Е = 3,8 • 10-9 Вт/м2 , что в 370 млрд раз меньше освещенности, создаваемой Солнцем. Расстояние до Полярной звезды составляет 200 пк, или около 650 св. лет (r = 6 • 1018 м). Поэтому светимость Полярной звезды  LП =  4r2E = 4 • 3,14 х  (6 • 1018 м)2 - 3,8 • 10-9 Вт/м2 = 9,1 • 1029 Вт = 4600 L. Как видим, несмотря на малую видимую яркость этой звезды, ее светимость в 4600 раз превышает солнечную.

Измерения показали, что среди звезд встречаются звезды в сотни тысяч раз более мощные, чем Солнце, и звезды со светимостями в десятки тысяч раз меньшими, чем у Солнца.

Измерения температур поверхности звезд показали, что температура поверхности звезды определяет ее видимый цвет и наличие спектральных линий поглощения тех или иных химических элементов в ее спектре. Так, Сириус сияет белым цветом и его температура равна почти 10 000 К. Звезда Бетельгейзе ( Ориона) имеет красный цвет и температуру поверхности около 3000 К. Солнце желтого цвета имеет температуру 6000 К. По температуре, по цвету и виду спектра все звезды разбили на спектральные классы, которые обозначаются буквами О, В, А, F, G, К, М. Спектральная классификация звезд приведена ниже в таблице.

Имеется еще одна интересная связь между спектральным классом звезды и ее светимостью, которая представляется в виде диаграммы (рис. 16.2) «спектр — светимость (в светимостях Солнца)» (ее еще называют диаграммой Герцшпрунга—Рассела в честь двух астрономов — Э. Герцшпрунга и Г. Рассела, построивших ее). На диаграмме четко выделяются четыре группы звезд. Главная последовательность. На нее ложатся параметры большинства звезд. К звездам главной последовательности относится и наше Солнце. Плотности звезд главной последовательности сравнимы с солнечной плотностью.

Красные гиганты. К этой группе в основном относятся звезды красного цвета с радиусами, в десятки раз превышающими солнечный, например звезда Арктур ( Волопаса), радиус которой превышает солнечный в 25 раз, а светимость — в 140 раз.
Сверхгиганты. Это звезды  со светимостями, в десятки и сотни тысяч раз превышающими солнечную. Радиусы этих звезд в сотни раз превышают радиус Солнца. К сверхгигантам красного цвета относится Бетельгейзе (Ориона). При массе примерно в 15 раз больше солнечной ее радиус превышает солнечный почти в 1000 раз. Средняя плотность этой звезды составляет всего 2 • 10-11 кг/м3, что более чем в 1 000 000 раз меньше плотности воздуха.

Белые карлики. Это группа звезд в основном белого цвета со светимостями в сотни и тысячи раз меньше солнечной. Они расположены слева внизу диаграммы. Эти звезды имеют радиусы почти в сто раз меньше солнечного и по размерам сравнимы с планетами. Примером белого карлика служит звезда Сириус В — спутник Сириуса. При массе, почти равной солнечной, и размере, в 2,5 раза большем, чем размер Земли, эта звезда имеет гигантскую среднюю плотность — р = 3 • 108 кг/м3. Чтобы понять, чем объясняются наблюдаемые отличия звезд разных групп, вспомним связь между светимостью, температурой и радиусом звезды, которую мы использовали для определения температуры Солнца (формула (16.3)).

Сравним две звезды спектрального класса К, одна — главной последовательности (ГП), другая — красный гигант (КГ). У них одинаковая температура — Т = 4500 К, а светимости отличаются в тысячу раз: т. е. красные гиганты в десятки раз больше по размерам, чем звезды главной последовательности.

Массы звезд удалось измерить только у звезд, входящих в состав двойных систем. И они определялись по параметрам орбит звезд и периоду их обращения вокруг друг друга с использованием третьего обобщенного закона Кеплера. Оказалось, что массы всех звезд лежат в пределах
Для звезд главной последовательности имеется связь между массой звезды и ее светимостью: чем больше масса звезды, тем больше ее светимостьТак, звезда спектрального класса В имеет массу около М 20M и ее светимость почти в 100 000 раз больше солнечной. Источник энергии Солнца и звезд. По современным представлениям, источником энергии, поддерживающим излучения Солнца и звезд, служит ядерная энергия, которая выделяется при термоядерных реакциях образования (синтеза) ядер атомов гелия из ядер атомов водорода. При реакции синтеза из четырех ядер атомов водорода (четырех протонов) образуется ядро атома гелия, при этом выделяется энергия Е = 4,8 • 10-12 Дж, называемая энергией связи, две элементарные частицы нейтрино и два позитрона (4Н Не + 2е+ + 2v + Е).

Для протекания ядерных реакций необходима температура выше нескольких миллионов Кельвинов, при которой участвующие в реакции протоны с одинаковыми зарядами смогли бы получить достаточную энергию для взаимного сближения, преодоления электрических сил отталкивания и слияния в одно новое ядро. В результате термоядерных реакций синтеза из водорода массой 1 кг образуется гелий массой 0,99 кг, дефект масс  m = 0,01 кг и выделяется энергия q =  2 = 9 • 1014 Дж.

Теперь можно оценить, на какое время хватит у Солнца запасов водорода, чтобы поддерживать наблюдаемое свечение Солнца, т. е. время жизни Солнца. Запас ядерной энергии Е = Мq = 2 • 1030 • 9 • 1014 = 1,8 • 1045 Дж.
Если поделить этот запас ядерной энергии на светимость Солнца L, то мы получим время жизни Солнца:

Если учесть, что Солнце состоит, по крайней мере на 70% из водорода и ядерные реакции протекают только в центре, в солнечном ядре, масса которого составляет около 0,1М и где температура достаточно высокая для протекания термоядерных реакций, то время жизни Солнца и звезд, похожих на Солнце, составит t 1010 лет. Солнце, по современным данным, существует уже около 5 млрд лет, так что ему еще жить и жить!

Термоядерные реакции синтеза гелия из водорода являются источником энергии звезд главной последовательности.

Определение спектров, цвета, температуры, светимости и масс звезд позволили классифицировать их по спектральным классам и обнаружить связь между спектральным классом и светимостью звезд, а также связь между их массой и светимостью.
Внутреннее строение Солнца и звезд главной последовательности. Строение Солнца. Мы не можем непосредственно заглянуть внутрь Солнца, поэтому представление о его внутреннем строении получаем только на основе теоритического анализа, используя наиболее общие законы физики и такие характеристики Солнца, как масса, радиус светимость.

Солнце не расширяется и не сжимается, оно находится в гидростатическом равновесии, так как силе гравитации, стремящейся сжать Солнце, препятствует сила газового давления изнутри. Расчеты показывают, что для поддержания гидростатического равновесия температура в центре Солнца должна быть примерно 15 • 106/ К. На расстоянии 0,7R температура падает до порядка 106/ К. Плотность вещества в центре Солнца около 1,5 • 105

Термоядерные реакции протекают в центральной области Солнца радиусом, примерно равным 0,3R. Эта область получила название ядра. Вне ядра температура недостаточна для протекания термоядерных реакций.

Энергия, выделившаяся в ядре Солнца, переносится наружу, к поверхности, двумя способами: лучистым и конвективным переносами. В первом случае энергия переносится излучением; во втором — при механических движениях нагретых масс вещества. Лучистый перенос энергии происходит в ядре до расстояний (0,6—0,7)R от центра Солнца, далее к поверхности энергия переносится конвекцией. Проявление конвекции наблюдается в виде грануляции в фотосфере. Полное время, которое требуется энергии, выделившейся в ядре, чтобы достигнуть поверхности Солнца, составляет около 10 млн. лет. Так что тот свет и тепло, которые согревают и освещают нашу Землю сегодня, были выработаны в термоядерных реакциях в центре Солнца 10 млн. лет назад.

Конечно, астрономы ищут способы заглянуть внутрь Солнца и проверить теоретические представления о его строении. На этом пути им на помощь пришли физики, изучающие элементарные частицы. Дело в том, что при термоядерных реакциях синтеза гелия из водорода наряду с выделением энергии происходит рождение элементарных частиц — нейтрино. В отличие от излучения нейтрино практически не задерживается веществом. Возникая в недрах Солнца и распространяясь со скоростью, близкой к скорости света, они через 2 с покидают поверхность Солнца и через 8 мин достигают Земли. Для наблюдений солнечных нейтрино был построен специальный нейтринный телескоп, который в течение многолетних наблюдений и зарегистрировал ожидаемый поток нейтрино от Солнца. Эти наблюдения окончательно подтвердили правильность наших теоретических моделей строения Солнца как звезды. Поэтому мы в полной мере можем использовать полученные результаты для разработки моделей других звезд. Другие звезды главной последовательности по строению во многом похожи на Солнце.

Красные гиганты и сверхгиганты. Отличительной особенностью этих звезд является отсутствие ядерных реакций в самом центре, несмотря на высокие температуры. Ядерные реакции протекают в тонких слоях вокруг плотного центрального ядра. Так как температура звезды уменьшается к поверхности, то в каждом слое идет определенный тип термоядерных реакций. В самых внешних слоях ядра, где температура составляет около 15 • 106 К, из водорода образуется гелий; глубже, где температура выше, из гелия образуется углерод; далее из углерода — кислород, и в самых глубоких слоях у очень массивных звезд при термоядерных реакциях образуется железо. Более тяжелые химические элементы образовываться с выделением энергии не могут. Наоборот их образование требует затраты энергии. И так, в красных гигантах и сверхгигантах формируются слоевые источники энергии, и образуется большинство химических элементов вплоть до атомов железа.

Белые карлики. Эти звезды были названы белыми карликами, так как сначала среди них были обнаружены звезды белого цвета, а значительно позже — желтого и других цветов. Размеры их небольшие, всего лишь тысячи и десятки тысяч километров, т. е. сравнимые с размерами Земли. Но их массы близки к массе Солнца, и поэтому их средняя плотность сотни килограммов в кубическом сантиметре. Примером такой звезды служит спутник Сириуса, обозначаемый обычно как Сириус В. У этой звезды спектрального класса А с температурой 9000 К диаметр лишь в 2,5 раза превышает диаметр Земли, а масса равна солнечной, так что средняя плотность превышает 100 кг/см3.

Пульсары и нейтронные звезды. В 1967 г. астрономы с помощью радиотелескопов обнаружили удивительные радиоисточники, которые испускали периодические импульсы радиоизлучения. Эти объекты получили название пульсары. Периоды импульсов пульсаров, которых сейчас известно свыше 400, заключены в пределах от нескольких секунд до 0,001 с. Удивляла высокая стабильность повторения импульсов; так, первый открытый пульсар, который обозначается как PSR 1919, расположенный в неприметном созвездии Лисички, имел период Т= 1,33 730 110 168 с (рис. 16.3). Высокая стабильность периода, доступная только при измерении современными атомными часами, заставила вначале предположить, что астрономы имеют дело с сигналами, посылаемыми внеземными цивилизациями. В конце концов, было доказано, что явление пульсации возникает в результате быстрого вращения нейтронных звезд, причем период следования импульсов равен периоду вращения нейтронной звезды.

Эти необычные звезды имеют радиусы (около 10 км и массы, сравнимые с солнечной. Плотность нейтронной звезды фантастическая и равна 2 • 1017 кг/м3. Она сравнима с плотностью   вещества в ядрах атомов. При такой плотности вещество звезды состоит из плотно упакованных нейтронов. По этой причине такие звезды получили название нейтронных звезд. Черные дыры. В конце XVIII в. известный астроном и математик П. Лаплас (1749—1827) привел простые, основанные на теории тяготения Ньютона рассуждения, которые позволили предсказать существование необычных объектов, получивших название черные дыры. Известно, что для преодоления притяжения небесного тела массой М и радиусом R нужна вторая космическая (параболическая) скорость. При меньшей скорости тело станет спутником небесного тела, при оно навсегда покинет небесное тело и никогда не вернется к нему. Для Земли 2 = 11,2 км/с, на поверхности Солнца 2 = 617 км/с. На поверхности нейтронной звезды массой, равной массе Солнца, и радиусом около 10 км2= 170 000 км/с и составляет всего около 0,6 скорости света. Как видно из формулы, при радиусе небесного тела, равном R = 2GM/c2, вторая космическая скорость будет равна скорости света с = 300 000 км/с. При еще меньших размерах вторая космическая скорость будет превышать скорость света. По этой причине даже свет не сможет покинуть такое небесное тело и дать информацию о процессах, происходящих на его поверхности, нам — далеким наблюдателям.

Если такие объекты во Вселенной существуют, то они являются как бы дырами, куда все проваливается и откуда ничего не выходит. Поэтому в современной литературе за ними укоренилось такое название — черные дыры.

В настоящее время обнаружены черные дыры в составе двойных звездных систем. Так, в созвездии Лебедя наблюдается тесная двойная система, одна из звезд, излучающая видимый свет, — обычная звезда спектрального класса В, другая — невидимая звезда малого размера излучает рентгеновские лучи и имеет массу около 10М. Эта невидимая звезда представляет собой черную дыру с размерами около 30 км. Рентгеновское излучение испускает не сама черная дыра, а нагретый до нескольких миллионов градусов диск, вращающийся вокруг черной дыры. Этот диск стоит из вещества, которое черная дыра своим тяготением вытягивает из яркой. Теоретические представления о внутреннем строении звезд главной последовательности были подтверждены прямыми наблюдениями потоков нейтрино из солнечного ядра.

В некоторых двойных звездных системах обнаружены черные дыры.

Эволюция звезд: рождение, жизнь и смерть звезд. В Млечном Пути наблюдаются газопылевые облака. Некоторые из них настолько плотные, что начинают сжиматься под действием собственного тяготения. По мере сжатия плотность и температура облака повышается, и оно начинает обильно излучать в инфракрасном диапазоне спектра. На этой стадии сжатия облако получило название протозвезда. Когда температура в недрах протозвезды повышается до нескольких миллионов Кельвинов, в них начинаются термоядерные реакции превращения водорода в гелий и протозвезда превращается в обычную звезду главной последовательности. Продолжительность пребывания звезд на главной последовательности определяется мощностью излучения звезды (светимостью) и запасами ядерной энергии.

После выгорания водорода в недрах звезды она раздувается и становится красным гигантом или сверхгигантом в зависимости от массы.

Раздувшаяся оболочка звезды небольшой массы уже слабо притягивается ее ядром и, постепенно удаляясь от него, образует планетарную туманность. После окончательного рассеяния оболочки остается лишь горячее ядро звезды — белый карлик. От звезды типа Солнца останется углеродный белый карлик.

Эволюция массивных звезд происходит более бурно. В конце своей жизни такая звезда может взорваться сверхновой звездой, а ее ядро, резко сжавшись, превратиться в сверхплотный объект — нейтронную звезду или даже в черную дыру. Сброшенная оболочка, обогащенная гелием и другими тяжелыми элементами, образовавшимися в недрах звезды, рассеивается в пространстве и служит материалом для формирования звезд нового поколения. В частности, есть основания полагать, что Солнце — звезда второго поколения.

В процессе эволюции протозвезда переходит на стадию звезды главной последовательности, исчерпав водород в ядре, становится красным гигантом. Звезды типа Солнца становятся белыми карликами, а звезды с большими массами взрываются и становятся либо нейтронными звездами, либо черными дырами.


























Тест по теме Строение и развитие Вселенной

Вариант 1

1. Какой объект состоит из весьма массивной черной дыры с обращающимися вокруг нее голубыми и белыми гигантами числом до 1 млн.?

  1. шаровое скопление

  2. рассеянное скопление

  3. ядро галактики

  4. не наша галактика

2. Галактики какого типа наиболее старые?

  1. спиральные

  2. эллиптические

  3. неправильные

  4. все одного возраста

3. На каком расстоянии находится галактика, если скорость ее удаления составляет 20000 км/с, Н=75 км/(с·Мпк)?

  1. 26,67 Мпк

  2. 266,7 пк

  3. 26,67 пк

  4. 266,7 Мпк

4. Сколько примерно возраст Солнца и большинства звезд?

  1. 5 млрд. лет

  2. 5 млн. лет

  3. несколько млн. лет

  4. несколько млрд. лет

5. Наша Галактика относится к типу:

  1. неправильных

  2. спиральных

  3. эллиптических

  4. Сейфертовских

6. Наше Солнце расположено в Галактике в:

  1. центре

  2. ядре

  3. плоскости ближе к краю

  4. плоскости ближе к центру

7. Размер нашей Галактики (световых лет):

  1. 1000

  2. 10 000

  3. 100 000

  4. 300 000

8. В каких областях галактики наиболее интенсивно идет звездообразование?

  1. в планетарных туманностях

  2. в газово-пылевых туманностях

  3. в скоплениях нейтрального водорода

  4. везде

9. Что особенно необычно в квазарах?

  1. мощное радиоизлучение

  2. большое красное смещение

  3. невелики для космических объектов, но светят ярче галактик

  4. блеск не остается постоянным

10. Самыми крупными известными сейчас объектами во Вселенной являются:

  1. галактики

  2. скопление галактик

  3. метагалактика

  4. скопление метагалактик

11. Имеют наибольшее из известных красные смещения

  1. сталкивающиеся галактики

  2. взрывающиеся галактики

  3. нормальные галактики

  4. квазары

12. Каков линейный диаметр галактики Малое Магелланово Облако, спутника нашей Галактики, если ее видимый угловой размер 220', а расстояние до нее 195000 световых лет?

  1. 63,8 пк

  2. 3830 пк

  3. 12490 пк

  4. 208,5 пк

13. Светлые газовые диффузные туманности:

  1. представляют собой более плотные, чем окружающая среда, облака межзвездной пыли

  2. имеют спектры излучения, содержащие линии ионизированного Н, Не, О и других элементов

  3. повсеместно присутствуют в межзвездном пространстве

  4. имеют спектры, повторяющие спектры освещающих их горячих звезд

14. Квазарами называют:

  1. различные звездные системы, подобные нашей Галактике

  2. ту часть Вселенной, которая доступна сейчас наблюдению

  3. исключительно активные объекты, являющиеся источниками мощного радиоизлучения и оптического излучения с очень большим красным смещением

  4. такие галактики, которые наряду со светом очень сильно излучают в радиодиапазоне

15. К какому типу галактик можно отнести туманность Андромеды (галактику М31)?

  1. гигантская, эллиптическая

  2. гигантская, пересеченная спирально

  3. гигантская, нормальная, спиральная

  4. подобная нашей Галактике


Ответы к тесту Строение и развитие Вселенной

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

3

2

4

4

2

3

3

2

2

3

4

2

4

3

3


Литература

  1. Мякишева Г.Я., Быховцов Б.Б., Сотский Н.Н. Физика. 10-11 класс (базовый и профильный уровни)  М.: Просвещение, 2012 г 

  2. Яремкевич А.П. Физика. Задачник 10-11 класс. - М.: Дрофа, 2005 г. 

Интернет-ресурсы

  1. http://vschool.km.ru - Виртуальный репетитор по физике.

  2. http://archive.1september.ru - Газета “1 сентября”: материалы по физике. Подборка публикаций по преподаванию физики в школе. Архив с 1997 г.

  3. http://experiment.edu.ru - Физика: коллекция опытов

  4. http://www.gomulina.orc.ru - Физика и астрономия: виртуальный методический кабинет. 















Скачать

Рекомендуем курсы ПК и ППК для учителей

Вебинар для учителей

Свидетельство об участии БЕСПЛАТНО!

Поделитесь с друзьями
ВКонтактеОдноклассникиTwitterМой МирLiveJournalGoogle PlusЯндекс