ХАРАКТЕРИСТИКИ ЗВЁЗД
И ИХ ВЗАИМОСВЯЗЬ
ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ЗВЁЗД
Основными характеристиками звёзд являются:
- светимость (L),
- температура поверхности,
- масса,
- радиус.
СВЕТИМОСТЬ
полная энергия, испускаемая звездой в единицу времени.
Светимость — одна из важнейших звёздных характеристик, позволяющая сравнивать между собой различные типы звёзд
R – радиус звезды; T – температура звезды, σ – постоянная Стефана-Больцмана
Светимость астрономического объекта не зависит от расстояния до объекта
Единица измерения светимости в СИ – Вт. Но зачастую светимость звёзд выражают в светимостях солнца
Основными характеристиками звёзд являются:
- светимость (полное количество энергии, излучаемое звездой в единицу времени (L),
- температура поверхности,
- масса,
Светимость звёзд (L) чаще выражается в единицах светимости Солнца (4x эрг/с). Светимость звезды вычисляют по энергии, достигающей Земли, при условии, если известно расстояние до звезды. По светимости звёзды различаются в очень широких пределах. Большинство звёзд составляют "карлики", их светимость ничтожна иногда даже по сравнению с Солнцем.
Характеристикой светимости является "абсолютная величина" звезды. Есть ещё понятие "видимая звёздная величина", которая зависит от светимости звезды, цвета и расстояния до неё. В большинстве случаев используют "абсолютную величину", чтобы реально оценить размеры звёзд, независимо как далеко они находятся. Чтобы узнать истинную величину, просто нужно звёзды отнести на какое-то условное расстояние (допустим на 10ПК). Звёзды высокой светимости имеют отрицательные значения. Например, видимая величина солнца -26,8. На расстоянии в 10ПК эта величина будет уже +5 (самые слабые звёзды, видимые невооружённым глазом, имеют величину +6).
Абсолютная звёздная величина (M) для звёзд определяется как видимая звёздная величина объекта, если бы он был расположен на расстоянии 10 парсек от наблюдателя.
ТЕМПЕРАТУРА
С помощью известных законов термодинамики можно определить температуру тела, измерив длину волны в максимуме излучения чёрного тела
ЦВЕТ
ДЛИНА ВОЛНЫ, нм
Фиолетовый, синий
390 - 455
Голубой
455 - 492
Зелёный
Жёлтый
492 - 557
557 - 597
Оранжевый
597 – 622
Красный
622 - 770
Известные законы термодинамики позволяют нам определить температуру тела, измеряя длину волны в максимуме излучения черного цвета.
Так, если температура поверхности 3-4 тыс. К, то её цвет красноватый, 6-7 тыс. К - жёлтый, 10-12 тыс. К - белый и голубой. В таблице ниже приведены интервалы длин волн, соответствующие различным цветам, которые можно наблюдать в оптическом диапазоне.
30 000 Нейтральный гелий А F 11 000 - 30 000 Водород G Ионизованный кальций 7 200 - 11 000 Ионизованный кальций, K 6 000 - 7 200 нейтральные металлы 5 200 - 6 000 Нейтральные металлы M 3 500 – 5 200 R Нейтральные металлы, полосы поглощения молекул Полосы поглощения циана N Углерод Последовательность спектров звёзд, получающихся при непрерывном изменении их поверхностных слоёв, обозначается следующими буквами: O, B, A, F, G, K, M (от горячих к холодным). " width="640"
ТЕМПЕРАТУРА
СПЕКТРАЛЬНЫЕ КЛАССЫ ЗВЁЗД
Спектральный Класс
Характерный признак спектральных линий
О
Температура, К
Ионизованный гелий
В
30 000
Нейтральный гелий
А
F
11 000 - 30 000
Водород
G
Ионизованный кальций
7 200 - 11 000
Ионизованный кальций,
K
6 000 - 7 200
нейтральные металлы
5 200 - 6 000
Нейтральные металлы
M
3 500 – 5 200
R
Нейтральные металлы, полосы поглощения молекул
Полосы поглощения циана
N
Углерод
Последовательность спектров звёзд, получающихся при непрерывном изменении их поверхностных слоёв, обозначается следующими буквами: O, B, A, F, G, K, M (от горячих к холодным).
ТЕМПЕРАТУРА
МАССА И РАДИУС ЗВЁЗД
Масса звёзд на протяжении жизни звезды может меняться
Ученые, изучая распределение звезд по массам и учитывая время жизни звезд различной массы, распределяют звезды по массам в момент их рождения.
Функция Солпитера
- вероятность рождения звезды определенной массы
ОБРАТИТЕ ВНИМАНИЕ
Это общая закономерность. Во многих областях Вселенной наблюдается дефицит массивных звезд. В тех областях, где молодых звезд много, звезд маленькой массы меньше.
Как правило, считается в Солнечной массе в качестве доли солнечной массы (M ☉ )
Также звёзды разделяются по массе, но в более узких пределах в отличие от светимости (которая может различаться и в 1000 раз). Очень мало звёзд, имеющих массу в 10 раз больше или меньше Солнечной.
Ученые, изучая распределение звезд по массам и учитывая время жизни звезд различной массы, распределяют звезды по массам в момент их рождения. Ими установлено, что вероятность рождения звезды определенной массы, очень приближенно, обратно пропорциональна квадрату массы (функция Солпитера):
Это общая закономерность. Во многих областях Вселенной наблюдается дефицит массивных звезд. В тех областях, где молодых звезд много, звезд маленькой массы меньше. Исследователи полагают, что первые звезды были яркими, массивными и короткоживущими.
Радиус звёзд может очень сильно отличаться, а также меняться… С появлением возможности проводить спектральный анализ, появились сведения о химическом составе звезды. По химическому составу звёзды представляют собой водородные и гелиевые плазмы, остальных элементов гораздо меньше. На 10тыс атомов водорода приходится 1000 атомов гелия, 5 атомов кислорода, 2 атома азота, 1 углерода и 0,5 железа. Других элементов ещё меньше….
Делались попытки построить теоретическую эволюцию звёзд вдоль главной последовательности на основе представлений о потери масс этими звёздами, но эти попытки оказались неудачными.
Время пребывания звёзд на главной последовательности зависит от их первоначальной массы. Чем больше излучение и масса звезды, тем скорее она израсходует свой водород.
ОСНОВНЫЕ ХАРАКТЕРИСТИКИ СОЛНЦА
ДИАГРАММА ГЕРЦШПРУНГА-РАССЕЛА
Была предложена примерно в 1910 году независимо Эйнаром Герцшпрунгом (Дания) и Генри Расселом (США). Диаграмма используется для классификации звёзд и соответствует современным представлениям о звёздной эволюции.
Эйнар Герцшпрунг и Генри Расселл
Около 90 % звёзд находятся на главной последовательности. Их светимость обусловлена термоядерными реакциями превращения водорода в гелий.
Диаграмма Герцшпрунга — Рассела (варианты транслитерации: диаграмма Герцшпрунга — Рессела, Расселла, просто диаграмма Г-Р или диаграмма цвет — звёздная величина, спектр — светимость) показывает зависимость между абсолютной звёздной величиной, светимостью, спектральным классом и температурой поверхности звезды. Звёзды на этой диаграмме образуют хорошо различимые участки.
Была предложена примерно в 1910 году независимо Эйнаром Герцшпрунгом (Дания) и Генри Расселом (США). Диаграмма используется для классификации звёзд и соответствует современным представлениям о звёздной эволюции.
Диаграмма даёт возможность (хотя и не очень точно) найти абсолютную величину по спектральному классу, особенно для спектральных классов O—F. Для поздних классов это осложняется необходимостью сделать выбор между гигантом и карликом, однако определённые различия в интенсивности некоторых линий позволяют уверенно сделать этот выбор.
Около 90 % звёзд находятся на главной последовательности. Их светимость обусловлена термоядерными реакциями превращения водорода в гелий. Выделяется также несколько ветвей проэволюционировавших звёзд — гигантов, в которых происходит горение гелия и более тяжёлых элементов. В левой нижней части диаграммы находятся полностью проэволюционировавшие белые карлики.
7
ДИАГРАММА ГЕРЦШПРУНГА-РАССЕЛА
Диаграмма Герцшпрунга — Рассела (варианты транслитерации: диаграмма Герцшпрунга — Рессела, Расселла, просто диаграмма Г-Р или диаграмма цвет — звёздная величина, спектр — светимость) показывает зависимость между абсолютной звёздной величиной, светимостью, спектральным классом и температурой поверхности звезды. Звёзды на этой диаграмме образуют хорошо различимые участки.
Была предложена примерно в 1910 году независимо Эйнаром Герцшпрунгом (Дания) и Генри Расселом (США). Диаграмма используется для классификации звёзд и соответствует современным представлениям о звёздной эволюции.
Диаграмма даёт возможность (хотя и не очень точно) найти абсолютную величину по спектральному классу, особенно для спектральных классов O—F. Для поздних классов это осложняется необходимостью сделать выбор между гигантом и карликом, однако определённые различия в интенсивности некоторых линий позволяют уверенно сделать этот выбор.
Около 90 % звёзд находятся на главной последовательности. Их светимость обусловлена термоядерными реакциями превращения водорода в гелий. Выделяется также несколько ветвей проэволюционировавших звёзд — гигантов, в которых происходит горение гелия и более тяжёлых элементов. В левой нижней части диаграммы находятся полностью проэволюционировавшие белые карлики.
Диаграмма Герцпршунга-Расселла для наиболее известных звёзд
Диаграмма Герцпршунга-Расселла (первоначальный вид)
7
ВИДЫ ЗВЁЗД
7
ВИДЫ ЗВЁЗД
1. Звёзды главной последовательности
Наиболее многочисленный класс звёзд составляют звёзды главной последовательности, к такому типу звёзд принадлежит и наше Солнце
Процион
2. Коричневые карлики
Тип звёзд, в которых ядерные реакции никогда не могли компенсировать потери энергии на излучение.
3. Белые карлики
Проэволюционировавшие звёзды с массой, не превышающей предел Чандрасекара (максимальная масса, при которой звезда может существовать как белый карлик), лишённые собственных источников термоядерной энергии.
4. Красные гиганты и сверхгиганты
Классификации звёзд начали строить сразу после того, как начали получать их спектры. В первом приближении спектр звезды можно описать как спектр чёрного тела, но с наложенными на него линиями поглощения или излучения. По составу и силе этих линий звезде присваивался тот или иной определённый класс. Так поступают и сейчас, однако, нынешнее деление звёзд гораздо более сложное: дополнительно оно включает абсолютную звёздную величину, наличие или отсутствие переменности блеска и размеров, а основные спектральные классы разбиваются на подклассы.
Теперь, когда есть теория внутреннего строения звёзд и теория их эволюции, стало возможным и объяснение существования классов звёзд. Оказалось, что всё многообразие видов звёзд — это не более чем отражение количественных характеристик звёзд (такие как масса и химический состав) и эволюционного этапа, на котором в данный момент находится звезда.
- Звёзды главной последовательности. Наиболее многочисленный класс звёзд составляют звёзды главной последовательности, к такому типу звёзд принадлежит и наше Солнце. С эволюционной точки зрения главная последовательность — это то место диаграммы Герцшпрунга-Рассела, на котором звезда находится большую часть своей жизни. В это время потери энергии на излучения компенсируются за счёт энергии, выделяющейся в ходе ядерных реакций. Время жизни на главной последовательности определяется массой и долей элементов тяжелее гелия (металличностью).
- Коричневые карлики — это тип звёзд, в которых ядерные реакции никогда не могли компенсировать потери энергии на излучение. Долгое время коричневые карлики были гипотетическими объектами. Их существование предсказали в середине XX в., основываясь на представлениях о процессах, происходящих во время формирования звёзд. Однако в 1995 году впервые был обнаружен коричневый карлик. На сегодняшний день открыто достаточно много звёзд подобного типа. Их спектральный класс М — T. В теории выделяется ещё один класс — обозначаемый Y (в 2011 году его существование подтвердилось открытием нескольких звёзд с температурой 300—500 К:
- Белые карлики - проэволюционировавшие звёзды с массой, не превышающей предел Чандрасекара (максимальная масса, при которой звезда может существовать как белый карлик), лишённые собственных источников термоядерной энергии.
- Красные гиганты и сверхгиганты — это звёзды с довольно низкой эффективной температурой (3000—5000 К), однако с огромной светимостью. Типичная абсолютная звёздная величина таких объектов −3m—0m(I и III класс светимости). Для их спектра характерно присутствие молекулярных полос поглощения, а максимум излучения приходится на инфракрасный диапазон.
- Переменные звёзды— это звезда, у которой за всю историю наблюдения хоть один раз менялся блеск. Причин переменности много и связаны они могут быть не только с внутренними процессами: если звезда двойная и луч зрения лежит или находится под небольшим углом к полю зрения, то одна звезда, проходя по диску звезды, будет его затмевать; также блеск может измениться, если свет от звезды пройдет сквозь сильное гравитационное поле. Однако в большинстве случаев переменность связана с нестабильными внутренними процессами. В последней версии общего каталога переменных звёзд принято следующее деление.
Эруптивные переменные звёзды — это звёзды, изменяющие свой блеск в силу бурных процессов и вспышек в их хромосферах и коронах. Изменение светимости происходит обычно вследствие изменений в оболочке или потери массы в форме звёздного ветра переменной интенсивности и/или взаимодействия с межзвёздной средой.
Пульсирующие переменные звёзды — это звёзды, показывающие периодические расширения и сжатия своих поверхностных слоёв. Пульсации могут быть радиальными и не радиальными. Радиальные пульсации звезды оставляют её форму сферической, в то время как не радиальные пульсации вызывают отклонение формы звезды от сферической, а соседние зоны звезды могут быть в противоположных фазах.
Вращающиеся переменные звёзды — это звёзды, у которых распределение яркости по поверхности неоднородно и/или они имеют неэлипсоидальную форму, вследствие чего при вращении звёзд наблюдатель фиксирует их переменность. Неоднородность яркости поверхности может быть вызвана наличием пятен или температурных или химических неоднородностей, вызванных магнитными полями, чьи оси не совпадают с осью вращения звезды.
Звёзды с довольно низкой эффективной температурой, однако с огромной светимостью
5. Переменные звёзды
Звезды, у которой за всю историю наблюдения хоть один раз менялся блеск.
7
ВИДЫ ЗВЁЗД
6. Звёзды типа Вольфа-Райе
Класс звёзд, для которых характерны очень высокая температура и светимость
7. Звёзды типа Т Тельца
Туманность M1-67 около звезды Вольфа — Райе WR 124
класс переменных звёзд, названный по имени своего прототипа Т Тельца
8. Сверхновые
звёзды, заканчивающие свою эволюцию в катастрофическом взрывном процессе.
Звёзды Вольфа — Райе — класс звёзд, для которых характерны очень высокая температура и светимость; звёзды Вольфа — Райе отличаются от других горячих звёзд наличием в спектре широких полос излучения водорода, гелия, а также кислорода, углерода, азота в разных степенях ионизации (NIII — NV, CIII — CIV, OIII — OV). Ширина этих полос может достигать 100 Å, а излучение в них может в 10-20 раз превышать излучение в континууме. Звёзды такого типа имеют свой класс — W[8]. Однако подклассы строятся совсем не как у звёзд главной последовательности:
Окончательной ясности происхождения звёзд типа Вольфа — Райе не достигнуто. Однако можно утверждать, что в нашей Галактике это гелиевые остатки массивных звёзд, сбросившие значительную часть массы на каком-то этапе своей эволюции.
Звёзды типа T Тельца (T Tauri, T Tauri stars, TTS) — класс переменных звёзд, названный по имени своего прототипа Т Тельца. Обычно их можно обнаружить рядом с молекулярными облаками и идентифицировать по их переменности (весьма нерегулярной) в оптическом диапазоне и хромосферной активности.
Они принадлежат к звёздам спектральных классов F, G, K, M и имеют массу меньше двух солнечных. Период вращения от 1 до 12 дней. Температура их поверхности такая же, как и у звёзд главной последовательности той же массы, но они имеют несколько большую светимость, потому что их радиус больше. Основным источником их энергии является гравитационное сжатие
Сверхно́вые звёзды — звёзды, заканчивающие свою эволюцию в катастрофическом взрывном процессе. Термином «сверхновые» были названы звёзды, которые вспыхивали гораздо (на порядки) сильнее так называемых «новых звёзд». На самом деле, ни те, ни другие физически новыми не являются, всегда вспыхивают уже существующие звёзды. Но в нескольких исторических случаях вспыхивали те звёзды, которые ранее были на небе практически или полностью не видны, что и создавало эффект появления новой звезды. Тип сверхновой определяется по наличию в спектре вспышки линий водорода. Если он есть, значит сверхновая II типа, если нет — то I типа.
Звезда типа Т Тельца с околозвёздным диском
Остаток сверхновой Кеплера
Крабовидная туманность как остаток сверхновой SN 1054
7
ЗВЁЗДНЫЕ СИСТЕМЫ
Двойная звезда , или двойная система , — система из двух гравитационно связанных звёзд, обращающихся по замкнутым орбитам вокруг общего центра масс.
Двойная звезда в представлении художника
Примеры кривых блеска для разделённой и тесной двойной системы
Двойная звезда, или двойная система, — система из двух гравитационно связанных звёзд, обращающихся по замкнутым орбитам вокруг общего центра масс. Двойные звёзды — весьма распространённые объекты. Примерно половина всех звёзд нашей Галактики принадлежит к двойным системам.
Измерив период обращения и расстояние между звёздами, иногда можно определить массы компонентов системы. Этот метод практически не требует дополнительных модельных предположений, и поэтому является одним из главных методов определения масс в астрофизике. По этой причине двойные системы, компонентами которых являются чёрные дыры или нейтронные звёзды, представляют большой интерес для астрофизики.
Физически двойные звезды можно разделить на два класса:
- звёзды, между которыми обмен масс невозможен в принципе — разделённые двойные системы.
- звёзды, между которыми идёт, будет идти или шёл обмен массами — тесные двойные системы.
Условный пример раздвоения и смещения линий в спектрах спектрально-двойных звёзд.
7
ЭВОЛЮЦИЯ ЗВЁЗД
7
ЭВОЛЮЦИЯ ЗВЁЗД
Звезда начинает свою жизнь как холодное разреженное облако межзвёздного газа, сжимающееся под действием гравитационной неустойчивости и постепенно принимающее шаровидную форму. При сжатии энергия гравитационного поля переходит в основном в тепло и излучение, и температура объекта возрастает. Когда температура в центре достигает 15—20 миллионов К, начинаются термоядерные реакции и сжатие прекращается. Объект становится полноценной звездой. Первая стадия жизни звезды подобна солнечной — в ней доминируют реакции водородного цикла[1]. В таком состоянии она пребывает бо́льшую часть своей жизни, находясь на главной последовательности диаграммы Герцшпрунга — Расселла, пока не закончатся запасы топлива в её ядре. Когда в центре звезды весь водород превращается в гелий, образуется гелиевое ядро, а термоядерное горение водорода продолжается на периферии ядра.
В этот период структура звезды начинает меняться. Её светимость растёт, внешние слои расширяются, а температура поверхности снижается — звезда становится красным гигантом, которые образуют ветвь на диаграмме Герцшпрунга-Рассела. На этой ветви звезда проводит значительно меньше времени, чем на главной последовательности. Когда накопленная масса гелиевого ядра становится значительной, оно не выдерживает собственного веса и начинает сжиматься; если звезда достаточно массивна, возрастающая при этом температура может вызвать дальнейшее термоядерное превращение гелия в более тяжёлые элементы (гелий — в углерод, углерод — в кислород, кислород — в кремний, и наконец — кремний в железо).
Вскоре после гелиевой вспышки «загораются» углерод и кислород; каждое из этих событий вызывает серьёзную перестройку тела звезды и её быстрое перемещение по диаграмме Герцшпрунга — Рассела. Размер атмосферы звезды увеличивается ещё больше, и она начинает интенсивно терять газ в виде разлетающихся потоков звёздного ветра. Судьба центральной части звезды полностью зависит от её исходной массы, — ядро звезды может закончить свою эволюцию как:
белый карлик (маломассивные звёзды);
как нейтронная звезда (пульсар), если масса звезды на поздних стадиях эволюции превышает предел Чандрасекара
как чёрная дыра, если масса звезды превышает предел Оппенгеймера — Волкова.
В двух последних ситуациях эволюция звёзды завершается катастрофическим событием — вспышкой сверхновых.
Подавляющее большинство звёзд, и Солнце в том числе, завершают свою эволюцию, сжимаясь до тех пор, пока давление вырожденных электронов не уравновесит гравитацию. В этом состоянии, когда размер звезды уменьшается в сотню раз, а плотность становится в миллион раз выше плотности воды, звезду называют белым карликом. Она лишена источников энергии и, постепенно остывая, становится невидимым черным карликом.
7
РЕШЕНИЕ ЗАДАЧ
1) Неверно. Вспоминаем диаграмму Герцшпрунга-Рассела. За спектральный класс отвечает температура звезды. В приведённом утверждении рассматриваются звёзды Альдебаран и Эль-Нат. Обращаем внимание на температуру: Альдебаран имеет температуру пов-ти 3500 К, а Эль-Нат 14 000 К. Имея разные температуры звёзды не могут иметь один спектральный класс
2) Звезда Ригель имеет температуру 11 200 К, но при этом вспоминаем, что сверхгиганты это звёзды со светимостями в десятки/сотни раз превышающими светимость Солнца.
7
РЕШЕНИЕ ЗАДАЧ
4
7
РЕШЕНИЕ ЗАДАЧ
4
5
7
РЕШЕНИЕ ЗАДАЧ
7
РЕШЕНИЕ ЗАДАЧ
2
7
РЕШЕНИЕ ЗАДАЧ
2
3
7
РЕШЕНИЕ ЗАДАЧ
7
РЕШЕНИЕ ЗАДАЧ
1
7
РЕШЕНИЕ ЗАДАЧ
1
3
7
РЕШЕНИЕ ЗАДАЧ
7