Просмотр содержимого документа
«"Проблемные ситуации по математике"»
Примеры проблемных ситуаций, используемых на уроках математики.
Изучение темы “Площадь треугольника” (геометрия 8 класс)
Самостоятельная работа
Задача: «Три маляра должны покрасить фронтон дома в форме прямоугольного треугольника со сторонами 3м и 4 м. Хватит ли им 1 банки краски, если на ней написано: площадь покрытия 10г/кв.м.?»
Переведем задачу на математический язык:
«Найдите площадь S прямоугольного треугольника, если один из катетов 3 м, а другой – 4 м» Отдельные ученики догадались - зная формулу площади прямоугольника, смогут решить эту задачу.
^ Первая проблемная ситуация.
«Как вычислить площадь прямоугольного треугольника, зная формулу для нахождения площади прямоугольника?»
Дети предлагают: достроить данный треугольник до прямоугольника.(если прямоугольный треугольник достроим до прямоугольника, то мы получим два равных треугольника, которые равны по двум катетам)
Вычисляют площадь прямоугольника, а затем находят площадь прямоугольного треугольника.
^ Вторая проблемная ситуация: всегда ли можем использовать получившуюся формулу , если треугольники бывают разной формы?
Задача: «Найти площадь любого остроугольного треугольника.»
При помощи наводящих вопросов ученики находят способ. Они предлагают достроить остроугольный треугольник до параллелограмма.
Доказываем, что полученные 2 треугольника равны по 3-му признаку равенства треугольников.
Вспоминаем формулу площади параллелограмма;
Выводим формулу площади любого остроугольного треугольника ;
Отвечаем на вопрос задачи: площадь любого остроугольного треугольника равна половине произведения его основания на высоту.
^ Третья проблемная ситуация: «Найти площадь любого тупоугольного треугольника».
С этой проблемой ученики справляются быстро.
Решаем основную проблему: «Найти площадь произвольного треугольника”. Проанализировав все случаи, сделайте вывод.
Вопрос: «Чему равна площадь произвольного треугольника?»
^ Предполагаемый ответ учеников: «Площадь произвольного треугольника равна половине произведения его основания на высоту.»
Создание проблемных ситуаций через решение задач на внимание и сравнение
Тема «Сумма углов треугольника» (7 класс):
1) Построить треугольник по трем заданным углам:
∟А=90°, ∟B=60°, ∟С=45°;
∟А=70°, ∟B=30°, ∟С=50°;
∟А=50°, ∟B=60°, ∟С=70°.
2) Два угла треугольника равны 118º и 62º. Найти величину третьего угла.
Создание проблемных ситуаций через умышленно допущенные учителем ошибки
Тема «Линейные уравнения с одной переменной» (6 класс)
Решаю быстро уравнение:
(3х + 7) × 2 – 3 = 17
6х + 14 – 3 = 17
6х = 17 – 14 – 3
6х = 0
х = 0
При проверке ответ не сходится. Проблемная ситуация. Ищем ошибку. Дети решают проблему.
^ Создание проблемных ситуаций через выполнение практических заданий
На прошлом уроке, ребята, мы измеряли длину и ширину нашего класса и по формуле, нашли его периметр. Р=( a+b)×2=(6+5)×2=22м. Помните!
Посмотрите, пожалуйста, на пол. Краска сносилась, много чёрных полос. Вам нравится? Мне тоже не нравится. Я думаю, что летом нам нужно обязательно покрасить пол.
Давайте с вами посчитаем, сколько денег нужно будет собрать с каждого родителя на покраску пола в классе, если 1 банка краски стоит 120 рублей и её хватает, чтобы покрасить 35 кв.м.
Проблемная ситуация.
Для решения этой задачи нам нужно найти площадь пола (площадь прямоугольника).
^ Создание проблемных ситуаций через противоречие нового материала старому, уже известному
Тема «Формулы сокращённого умножения» (7 класс)
Вычисляем (2 × 5)²= 2² × 5² = 100
(3 × 4)²= 3² × 4² = 9 × 16 = 144
(5 : 6)² = 5² : 6² = 25 : 36
(3 + 4)² = 3² + 4² = 9 + 16 = 25
Попробуйте сосчитать по-другому.
( 3 + 4)² =7² = 49
Проблемная ситуация создана. Почему разные результаты?
( 3 +4)² ≠ 3² + 4²
Таким образом, технология проблемного обучения на уроках математики- это способ достижения цели через детальную разработку проблемы, которая должна завершиться вполне реальным, осязаемым практическим результатом.