1.Планируемые результаты освоения учебного предмета.
В результате обучения алгебры учащиеся в 9 классе должны:
знать/понимать:
– значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
– значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;
– универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности; вероятностный характер различных процессов окружающего мира;
уметь:
– выполнять арифметические действия, сочетая устные и письменные приемы; находить значения корня натуральной степени, степени с рациональным показателем, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;
– составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;
– выполнять основные действия со степенями с целыми показателями, с многочленами и алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;
– применять свойства арифметических квадратов корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;
– решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы двух линейных уравнений и несложные нелинейные уравнения;
– решать линейные и квадратные неравенства с одной переменной и их системы;
– решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;
– изображать числа точками на координатной прямой;
– определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;
– распознавать арифметические и геометрические прогрессии; решать задачи с применением формулы общего члена и суммы нескольких первых членов;
– находить значения функции, заданной формулой, таблицей, графиком по её аргументу; находить значения аргумента по значению функции, заданной графиком или таблицей;
– определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;
– описывать свойства изученных функций, строить их графики;
– извлекать информацию, представленную в таблицах, на диаграммах, графиках; составлять таблицы, строить диаграммы и графики;
– решать комбинаторные задачи путём систематического перебора возможных вариантов и с использованием правила умножения;
– вычислять средние значения результатов измерений;
– находить частоту события, используя собственные наблюдения и готовые статистические данные;
– находить вероятности случайных событий в простейших случаях;
владеть компетенциями: познавательной, коммуникативной, информационной и рефлексивной;
решать следующие жизненно-практические задачи:
– самостоятельно приобретать и применять знания в различных ситуациях;
– работать в группах;
– аргументировать и отстаивать свою точку зрения;
– уметь слушать других; извлекать учебную информацию на основе сопоставительного анализа объектов;
– самостоятельно действовать в ситуации неопределённости при решении актуальных для них проблем.
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;
моделирования практических ситуаций и исследования построенных моделей с использованием аппарата алгебры;
описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;
интерпретации графиков реальных зависимостей между величинами.
1.Рациональные неравенства и их системы
Знать/понимать:
понятия линейного и квадратного неравенства;
рациональные неравенства и способы их решения: метод интервалов, метод замены переменной;
о частном и общем решении рациональных неравенств и их систем, о неравенствах с модулями, о равносильности неравенств;
Уметь:
совершать равносильные преобразования, решать неравенства методом интервалов; методом замены переменной;
решать неравенства с модулем;
решать уравнения с параметрами;
решать системы линейных неравенств
2.Cистемы уравнений
Знать/понимать:
понятия о системе двух рациональных уравнений с двумя переменными, о рациональном уравнении с двумя переменными;
различные методы решения уравнений и систем уравнений различными методами: графическим, подстановкой, алгебраического сложения, введения новых переменных.
Уметь:
совершать равносильные преобразования, решать уравнения и системы уравнений с двумя переменными;
решать уравнения и системы уравнений различными методами: графическим, подстановкой, алгебраического сложения, введения новых переменных.
3.Cистемы двух линейных уравнений с двумя переменными
Знать/понимать:
о таких фундаментальных понятиях математики, какими являются понятия функции, её области определения, области значения; о различных способах задания функции: аналитическом, графическом, табличном, словесном;
свойства функций: четность или нечетность, ограниченность, непрерывность, монотонность;
как свойства функций отражаются на поведении графиков функций.
Уметь:
применять свойства четности или нечетности, ограниченности, непрерывности, монотонности для исследования функций;
4.Прогрессии
Знать/понимать:
понятии числовой последовательности, арифметической и геометрической прогрессиях как частных случаях числовых последовательностей; три способа задания последовательности: аналитический, словесный и рекуррентный;
свойства арифметической и геометрической прогрессий;
Формулы n-го члена арифметической прогрессии, суммы членов конечной арифметической прогрессии;
формулы n-го члена геометрической прогрессии, суммы членов конечной геометрической прогрессии,
Уметь:
5.Элементы комбинаторики, статистики и теории вероятностей
Знать/понимать:
Уметь:
2. Содержание учебного предмета
1.Рациональные неравенства и их системы
Линейное и квадратное неравенство с одной переменной, частное и общее решение, равносильность, равносильные преобразования. Рациональные неравенства с одной переменной, метод интервалов, кривая знаков, нестрогие и строгие неравенства. Элемент множества, подмножество данного множества, пустое множество. Пересечение и объединение множеств. Системы линейных неравенств, частное и общее решение системы неравенств.
2.Cистемы уравнений
Рациональное уравнение с двумя переменными, решение уравнения с двумя переменными, равносильные уравнения, равносильные преобразования. График уравнения, система уравнений с двумя переменными, решение системы уравнений с двумя переменными. Метод подстановки, метод алгебраического сложения, метод введения новых переменных, графический метод, равносильные системы уравнений.
3.Cистемы двух линейных уравнений с двумя переменными
Функция, область определение и множество значений функции. Аналитический, графический, табличный, словесный способы задания функции. График функции. Монотонность (возрастание и убывание) функции, ограниченность функции снизу и сверху, наименьшее и наибольшее значения функции, непрерывная функция, выпуклая вверх или вниз. Элементарные функции. Четная и нечетная функции и их графики. Степенные функции с натуральным показателем, их свойства и графики. Свойства и графики степенных функций с четным и нечетным показателями, с отрицательным целым показателем.
4.Прогрессии
Числовая последовательность. Способы задания числовой последовательности. Свойства числовых последовательностей, монотонная последовательность, возрастающая последовательность, убывающая последовательность. Арифметическая прогрессия, разность, возрастающая прогрессия, конечная прогрессия, формула n-го члена арифметической прогрессии, формула суммы членов конечной арифметической прогрессии, характеристическое свойство арифметической прогрессии. Геометрическая прогрессия, знаменатель прогрессии, возрастающая прогрессия, конечная прогрессия, формула n-го члена геометрической прогрессии, формула суммы членов конечной геометрической прогрессии, характеристическое свойство геометрической прогрессии.
5.Элементы комбинаторики, статистики и теории вероятностей
Методы решения простейших комбинаторных задач (перебор вариантов, построение дерева вариантов, правило умножения). Факториал. Общий ряд данных и ряд данных конкретного измерения, варианта ряда данных, её кратность, частота и процентная частота, сгруппированный ряд данных, многоугольники распределения. Объем, размах, мода, среднее значение. Случайные события: достоверное и невозможное события, несовместные события, событие, противоположное данному событию, сумма двух случайных событий. Классическая вероятностная схема. Классическое определение вероятности.
Раздел | количество часов в примерной программе | количество часов в рабочей программе |
Повторение | | 4 |
Рациональные неравенства и их системы | 13 | 15 |
Системы уравнений | 15 | 15 |
Числовые функции | 23 | 24 |
Прогрессии | 17 | 16 |
Элементы комбинаторики, статистики и теории вероятностей | 16 | 12 |
Повторение. решение задач. | 18 | 13 |
ИТОГО: 99 часов
Этнокультурный компонент реализуется в поурочном планировании.
7